当前位置: 首页 > news >正文

REDIS16_LRU算法概述、查看默认内存、默认是如何删除数据、缓存淘汰策略

文章目录

  • ①. LRU算法概述
  • ②. 查看默认内存
  • ③. 如何删除数据
  • ④. 缓存淘汰策略

①. LRU算法概述

  • ①. LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的数据给予淘汰 (leetcode-cn.com/problems/lru-cache)

  • ②. LRU算法题来源
    在这里插入图片描述

  • ③. 设计思想

  1. 所谓缓存,必须要有读+写两个操作,按照命中率考虑,写操作+读操作时间复杂度都需要为O(1)
  2. 特征要求:
    必须要有顺序之分,一区分最近使用的和很久没有使用的数据排序
    写和读操作一次搞定
    如果容量坑位满了要删除最不长用的数据,每次信访问还要把心得数据插入到对头

在这里插入图片描述

在这里插入图片描述

  • ④. 使用LinkHashMap实现LRU算法,LinkedHashMap的注释中写明了: LinkedHashMap非常适合用来构建 LRU 缓存
    在这里插入图片描述
public class LRUCacheDemo <k,V>extends LinkedHashMap<k,V> {/*** 缓存坑位*/private int capacity;public LRUCacheDemo(int capacity) {/*** @param  initialCapacity the initial capacity* @param  loadFactor      the load factor* @param  accessOrder     the ordering mode - <tt>true</tt> for*         access-order, <tt>false</tt> for insertion-order*/super(capacity,0.75F,true);this.capacity=capacity;}@Overrideprotected boolean removeEldestEntry(Map.Entry<k, V> eldest) {return super.size() > capacity;}public static void main(String[] args) {LRUCacheDemo lruCacheDemo = new LRUCacheDemo(3);lruCacheDemo.put(1,"a");lruCacheDemo.put(2,"b");lruCacheDemo.put(3,"c");// [1,2,3]System.out.println(lruCacheDemo.keySet());// [2,3,4]lruCacheDemo.put(4,"d");System.out.println(lruCacheDemo.keySet());// [2,4,3]lruCacheDemo.put(3,"c");System.out.println(lruCacheDemo.keySet());// [2,4,3]lruCacheDemo.put(3,"c");System.out.println(lruCacheDemo.keySet());// [4,3,5]lruCacheDemo.put(5,"c");System.out.println(lruCacheDemo.keySet());}
}
  • ⑤. 完全自己手写
public class LRUSelfCacheDemo {// map 负责查找,构建一个虚拟的双向链表,它里面装的就是一个个 Node 节点,作为数据载体// 1.构造一个node节点作为数据载体class Node<K, V> {K key;V value;Node<K, V> prev;Node<K, V> next;public Node() {this.prev = this.next = null;}public Node(K key, V value) {this.key = key;this.value = value;this.prev = this.next = null;}}// 2.构建一个虚拟的双向链表,,里面安放的就是我们的Nodeclass DoubleLinkedList<K, V> {Node<K, V> head;Node<K, V> tail;public DoubleLinkedList() {head = new Node<>();tail = new Node<>();head.next = tail;tail.prev = head;}// 3.添加到头public void addHead(Node<K, V> node) {node.next = head.next;node.prev = head;head.next.prev = node;head.next = node;}// 4.删除节点public void removeNode(Node<K, V> node) {node.next.prev = node.prev;node.prev.next = node.next;node.prev = null;node.next = null;}// 5.获得最后一个节点public Node getLast() {return tail.prev;}}private int cacheSize;Map<Integer, Node<Integer, Integer>> map;DoubleLinkedList<Integer, Integer> doubleLinkedList;public LRUSelfCacheDemo(int cacheSize) {this.cacheSize = cacheSize;//坑位map = new HashMap<>();//查找doubleLinkedList = new DoubleLinkedList<>();}public int get(int key) {if (!map.containsKey(key)) {return -1;}Node<Integer, Integer> node = map.get(key);doubleLinkedList.removeNode(node);doubleLinkedList.addHead(node);return node.value;}public void put(int key, int value) {if (map.containsKey(key)) {  //updateNode<Integer, Integer> node = map.get(key);node.value = value;map.put(key, node);doubleLinkedList.removeNode(node);doubleLinkedList.addHead(node);} else {if (map.size() == cacheSize)  //坑位满了{Node<Integer, Integer> lastNode = doubleLinkedList.getLast();map.remove(lastNode.key);doubleLinkedList.removeNode(lastNode);}//新增一个Node<Integer, Integer> newNode = new Node<>(key, value);map.put(key, newNode);doubleLinkedList.addHead(newNode);}}public static void main(String[] args) {LRUSelfCacheDemo lruCacheDemo = new LRUSelfCacheDemo(3);lruCacheDemo.put(1, 1);lruCacheDemo.put(2, 2);lruCacheDemo.put(3, 3);System.out.println(lruCacheDemo.map.keySet());lruCacheDemo.put(4, 1);System.out.println(lruCacheDemo.map.keySet());lruCacheDemo.put(3, 1);System.out.println(lruCacheDemo.map.keySet());lruCacheDemo.put(3, 1);System.out.println(lruCacheDemo.map.keySet());lruCacheDemo.put(3, 1);System.out.println(lruCacheDemo.map.keySet());lruCacheDemo.put(5, 1);System.out.println(lruCacheDemo.map.keySet());}
}

②. 查看默认内存

  • ①. 查看Redis最大占用内存:打开redis配置文件,设置maxmemory参数,maxmemory是bytes字节类型,注意转换
    在这里插入图片描述

  • ②. redis默认内存多少可以用?
    如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB

  • ③. 一般生产上你如何配置?
    一般推荐Redis设置内存为最大物理内存的四分之三(和hashMap默认的负载因子0.75一致)

  • ④. 通过修改文件配置[1]
    在这里插入图片描述

  • ⑤. 通过命令修改[2]
    在这里插入图片描述

  • ⑥. 什么命令查看redis内存使用情况?

info memory
  • ⑦. 如果Redis内存使用超出了设置的最大值会怎样?
    在这里插入图片描述

③. 如何删除数据

  • ①. 立即删除
  1. Redis不可能时时刻刻遍历所有被设置了生存时间的key,来检测数据是否已经到达过期时间,然后对它进行删除
  2. 立即删除能保证内存中数据的最大新鲜度,因为它保证过期键值会在过期后马上被删除,其所占用的内存也会随之释放。但是立即删除对cpu是最不友好的。因为删除操作会占用cpu的时间,如果刚好碰上了cpu很忙的时候,比如正在做交集或排序等计算的时候,就会给cpu造成额外的压力,让CPU心累,时时需要删除,忙死
  3. 这会产生大量的性能消耗,同时也会影响数据的读取操作
  4. 总结:对CPU不友好,用处理器性能换取存储空间 (拿时间换空间)
  • ②. 惰性删除
  1. 数据到达过期时间,不做处理。等下次访问该数据时,如果未过期,返回数据,如果未过期,返回数据
  2. 惰性删除策略的缺点是,它对内存是最不友好的
  3. 在使用惰性删除策略时,如果数据库中有非常多的过期键,而这些过期键又恰好没有被访问到的话,那么它们也许永远也不会被删除(除非用户手动执行FLUSHDB),我们甚至可以将这种情况看作是一种内存泄漏–无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息
  4. 总结:对memory不友好,用存储空间换取处理器性能(拿空间换时间)
  • ③. 定期删除
  1. 定期删除策略是前两种策略的折中
  2. 定期删除策略每隔一段时间执行一次删除过期键操作,并通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响
  3. 定期删除策略的难点是确定删除操作执行的时长和频率:如果删除操作执行得太频繁,或者执行的时间太长,定期删除策略就会退化成立即删除策略,以至于将CPU时间过多地消耗在删除过期键上面。如果删除操作执行得太少,或者执行的时间太短,定期删除策略又会和惰性删除束略一样,出现浪费内存的情况。因此,如果采用定期删除策略的话,服务器必须根据情况,合理地设置删除操作的执行时长和执行频率
    在这里插入图片描述
  • ④. 总结下对于惰性删除和定期删除时
  1. 定期删除时,从来没有被抽查到
  2. 惰性删除时,也从来没有被点中使用过
  3. 引入redis缓存淘汰策略登场

④. 缓存淘汰策略

  • ①. 有哪些(redis6.0.8版本) - 这个是要背下来的各位网友
  1. noeviction: 不会驱逐任何key,农村满了就报错
  2. allkeys-lru: 对所有key使用LRU算法进行删除
  3. volatile-lru: 对所有设置了过期时间的key使用LRU算法进行删除
  4. allkeys-random: 对所有key随机删除
  5. volatile-random: 对所有设置了过期时间的key随机删除
  6. volatile-ttl: 删除马上要过期的key
  7. allkeys-lfu: 对所有key使用LFU算法进行删除
  8. volatile-lfu: 对所有设置了过期时间的key使用LFU算法进行删除
  • ②. 总结上面8种模式:2 * 4 得8、2个维度(过期键中筛选、所有键中筛选)、4个方面(LRU、LFU、random、ttl)、8个选项
  1. LRU:最近最少使用(最长时间)淘汰算法(Least Recently Used)。LRU是淘汰最长时间没有被使用的页面
  2. LFU:最不经常使用(最少次)淘汰算法(Least Frequently Used)。LFU是淘汰一段时间内,使用次数最少的页面
  • ③. 工作中使用的是哪种:maxmemory-policy allkey-lru
http://www.lryc.cn/news/38887.html

相关文章:

  • ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning学习笔记
  • CSDN竞赛第35期题解
  • Java应用服务系统安全性,签名和验签浅析
  • spring中bean的实例化
  • 磨皮插件portraiture2023最新中文版
  • 记录每日LeetCode 2269.找到一个数组的K美丽值 Java实现
  • 代码管理--svnadmin工具介绍
  • Git的基本使用以及上传到GitHub
  • 国科大论文latex模板中可能的注意事项
  • ABAP 怎样将XML和JSON格式转换为HTML格式显示
  • 基础课DP
  • 基于支持向量机SVM的风电场NWP数据预测,SVM的详细原理
  • webRtc概念
  • 数据结构与算法基础(王卓)(16):KMP算法详解(代码实现)
  • 九龙证券|盘前直接腰斩,银行巨头紧急“拔网线”!美股银行股又崩了?
  • 接口优化常用思路
  • 【SpringCloud】SpringCloud面试题整理
  • 一些数据库知识点总结
  • Python unittest 模块
  • Spring - Spring IoC 容器相关面试题总结
  • 顺序表来喏!!!
  • 【H2实践】之 SpringBoot 与 H2 数据交互
  • LeetCode 424. Longest Repeating Character Replacement
  • 建立自己的博客(记录-不推荐)
  • hashmap存储方式 hash碰撞及其解决方式
  • Amazon GuardDuty 的新增功能 – Amazon EBS 卷的恶意软件检测
  • YOLOv7 pytorch
  • JDK自带JVM分析工具
  • IO多路复用--[select | poll | epoll | Reactor]
  • pod的requests、limits解读、LimitRange资源配额、Qos服务质量等级、资源配额管理 Resource Quotas