当前位置: 首页 > news >正文

昇思25天学习打卡营第6天|简单的深度学习模型实战 - 函数式自动微分

自动微分(Automatic Differentiation)是什么?微分是函数在某一处的导数值,自动微分就是使用计算机程序自动求解函数在某一处的导数值。自动微分可用于计算神经网络反向传播的梯度大小,是机器学习训练中不可或缺的一步。

这些公式难免让人头大,好在自动微分就是帮助我们“自动”解决微分问题的。机器学习平台如TensorFlow、PyTorch都实现了自动微分,使用非常的方便,不过有必要理解其原理。要理解“自动微分”,需要先理解常见的求解微分的方式,可分为以下四种:

  • 手动求解法(Manual Differentiation)
  • 数值微分法(Numerical Differentiation)
  • 符号微分法(Symbolic Differentiation)
  • 自动微分法(Automatic Differentiation)

所谓手动求解法就是手动算出求导公式,然后将公式编写成计算机代码完成计算。比如对于函数求微分,首先根据求导公式表找出其导数函数 ,然后将这个公式写成计算机程序,对于任意的输入 都能用这段程序求出其导数,也就是此时的微分。是不是很简单?

这样做虽然直观,但却有两个明显的缺点:

  • 每次都要根据手动算出求导公式然后编写代码,导致程序很难复用。
  • 更让人难受的是,复杂的函数普通人很难轻易写出求导公式

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。

自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口grad和value_and_grad。下面我们使用一个简单的单层线性变换模型进行介绍。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

函数与计算图

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。

compute-graph

在这个模型中, 𝑥为输入, 𝑦为正确值, 𝑤和 𝑏是我们需要优化的参数。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

我们根据计算图描述的计算过程,构造计算函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss

执行计算函数,可以获得计算的loss值。

loss = function(x, y, w, b)
print(loss)
Tensor(shape=[], dtype=Float32, value= 0.914285)

微分函数与梯度计算

为了优化模型参数,需要求参数对loss的导数: ∂loss∂𝑤和 ∂loss∂𝑏,此时我们调用mindspore.grad函数,来获得function的微分函数。

这里使用了grad函数的两个入参,分别为:

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对 𝑤和 𝑏求导,因此配置其在function入参对应的位置(2, 3)。使用grad获得微分函数是一种函数变换,即输入为函数,输出也为函数。

grad_fn = mindspore.grad(function, (2, 3))

执行微分函数,即可获得 𝑤 、 𝑏对应的梯度。

grads = grad_fn(x, y, w, b)
print(grads)
(Tensor(shape=[5, 3], dtype=Float32, value=[[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01]]),Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01]))

在这里插入图片描述

Stop Gradient

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将function改为同时输出loss和z的function_with_logits,获得微分函数并执行。

def function_with_logits(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss, z
grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00]]),
Tensor(shape=[3], dtype=Float32, value= [ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00]))

可以看到求得 𝑤、 𝑏对应的梯度值发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用ops.stop_gradient接口,将梯度在此处截断。我们将function实现加入stop_gradient,并执行。

def function_stop_gradient(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss, ops.stop_gradient(z)
grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),
Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]))

可以看到,求得 𝑤 、 𝑏对应的梯度值与初始function求得的梯度值一致。

在这里插入图片描述

Auxiliary data

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

grad和value_and_grad提供has_aux参数,当其设置为True时,可以自动实现前文手动添加stop_gradient的功能,满足返回辅助数据的同时不影响梯度计算的效果。

下面仍使用function_with_logits,配置has_aux=True,并执行。

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)
grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)

((Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),
Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01])),
Tensor(shape=[3], dtype=Float32, value= [-1.40476596e+00, -1.64932394e+00, 2.24711204e+00]))

可以看到,求得 𝑤 、 𝑏
对应的梯度值与初始function求得的梯度值一致,同时z能够作为微分函数的输出返回。

神经网络梯度计算

根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的nn.Cell。接下来我们通过Cell构造同样的神经网络,利用函数式自动微分来实现反向传播。

首先我们继承nn.Cell构造单层线性变换神经网络。这里我们直接使用前文的 𝑤、 𝑏作为模型参数,使用mindspore.Parameter进行包装后,作为内部属性,并在construct内实现相同的Tensor操作。

# Define model
class Network(nn.Cell):def __init__(self):super().__init__()self.w = wself.b = b
​def construct(self, x):z = ops.matmul(x, self.w) + self.breturn z

接下来我们实例化模型和损失函数。

# Instantiate model
model = Network()
# Instantiate loss function
loss_fn = nn.BCEWithLogitsLoss()

完成后,由于需要使用函数式自动微分,需要将神经网络和损失函数的调用封装为一个前向计算函数。

# Define forward function
def forward_fn(x, y):z = model(x)loss = loss_fn(z, y)return loss

完成后,我们使用value_and_grad接口获得微分函数,用于计算梯度。

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用grad_position指定对函数输入求导,因此将其配置为None。对模型参数求导时,我们使用weights参数,使用model.trainable_params()方法从Cell中取出可以求导的参数。

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),

Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]))
执行微分函数,可以看到梯度值和前文function求得的梯度值一致。

在这里插入图片描述

http://www.lryc.cn/news/388773.html

相关文章:

  • 基于Linux的云端垃圾分类助手
  • 【PYG】Planetoid中边存储的格式,为什么打印前十条边用edge_index[:, :10]
  • 【知识图谱系列】(实例)python操作neo4j构建企业间的业务往来的知识图谱
  • 解决MySQL删除/var/lib/mysql下的所有文件后无法启动的问题
  • 探索WebKit的Flexbox奇境:CSS Flexbox支持全解析
  • Unity--协程--Coroutine
  • 详解COB显示屏的技术特点
  • 富唯智能推出的AMR复合机器人铝板CNC上下料方案
  • springcloud-config服务器,同样的配置在linux环境下不生效
  • 写代码,为什么还需要作图?
  • 一句话介绍什么是AI智能体?
  • 32.哀家要长脑子了!
  • Vue2 - 项目上线后生产环境中去除console.log的输出以及断点的解决方案
  • phpword生成PDF
  • Linux进程优先级
  • 每日一题——Python实现PAT乙级1096 大美数(举一反三+思想解读+逐步优化)3千字好文
  • 无锁编程——从CPU缓存一致性讲到内存模型(1)
  • C++编程(七)继承
  • 【ACM_2023】3D Gaussian Splatting for Real-Time Radiance Field Rendering
  • 【TB作品】atmega16 计算器,ATMEGA16单片机,Proteus仿真
  • C++的IO流操作
  • MacOS升级指定Python版本的pip
  • 音频Balance源码总结
  • CesiumJS【Basic】- #043 绘制脉冲线(Entity方式)- 需要自定义着色器
  • Linux命令 wc(word count)-l(lines)用于统计文件中的行数。
  • 数据结构 - C/C++ - 链表
  • sheng的学习笔记-AI-高斯混合模型(GMM)
  • OFDM的缺点与关键技术
  • 电脑录音软件哪个好?7款录制音频工具大盘点,赶快学起来!(2024)
  • 【Android面试八股文】你说你使用Leakcanary进行内存泄漏检测,那你能说一说Leakcanary的原理吗?