当前位置: 首页 > news >正文

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录

  • 1.图的遍历
    • 1.广度优先遍历
    • 2.深度优先遍历
  • 2.最小生成树
    • 1.Kruskal算法
    • 2.Prim算法


1.图的遍历

  • 给定一个图G和其中任意一个顶点 v 0 v_0 v0,从 v 0 v_0 v0出发,沿着图中各边访问图中的所有顶点,且每个顶 点仅被遍历一次
    • “遍历”:对结点进行某种操作的意思

1.广度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,广度优先遍历的做法是:

    1. 先将三个抽屉打开,在最外层找一遍
    2. 将每个抽屉中红色的盒子打开,再找一遍
    3. 将红色盒子中绿色盒子打开,再找一遍
    4. 直到找完所有的盒子
      • 注意:每个盒子只能找一次,不能重复找
        请添加图片描述
  • 思考:如何防止节点被重复遍历?

    • 增加一个数组,用于标记是否入过队列,这样可以防止重复遍历
void BFS(const V& src)
{size_t srci = GetVertexIndex(src);queue<int> q;vector<bool> visited(_vertexs.size(), false); // 标记数组q.push(srci);visited[srci] = true;int levelSize = 1; // 控制每层出的数量while (!q.empty()){// 一层一层出for (size_t i = 0; i < levelSize; i++){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";// 把front的邻接顶点入队列for (size_t j = 0; j < _vertexs.size(); j++){if (_matrix[front][j] != MAX_W && visited[j] == false){q.push(j);visited[j] = true;}}}cout << endl;levelSize = q.size();}
}

2.深度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,深度优先遍历的做法是:
    1. 先将第一个抽屉打开,在最外层找一遍
    2. 将第一个抽屉中红盒子打开,在红盒子中找一遍
    3. 将红盒子中绿盒子打开,在绿盒子中找一遍
    4. 递归查找剩余的两个盒子
    • **深度优先遍历:**将一个抽屉一次性遍历完(包括该抽屉中包含的小盒子),再去递归遍历其他盒子
  • 如果给的图不是连通图,以某个顶点为起点没有遍历完成,怎么保证遍历完剩下的顶点
    • 在visited数组中找没有遍历过的顶点,再次进行遍历
void _DFS(size_t srci, vector<bool>& visited)
{cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;for (size_t i = 0; i < _vertexs.size(); i++){if (_matrix[i] != MAX_W && visited[i] == false){_DFS(i, visited);}}
}void DFS(const V& src)
{size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);// 处理存在不连通的情况for (size_t i = 0; i < _vertexs.size(); i++){if (!visited[i]){_DFS(i, visited);}}
}

2.最小生成树

  • 连通图中的每一棵生成树,都是原图的一个极大无环子图,即:
    • 从其中删去任何一条边,生成树就不在连通
    • 反之,在其中引入任何一条新边,都会形成一条回路
  • 若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边,因此构造最小生成树的准则有三条:
    • 只能使用图中权值最小的边来构造最小生成树
      • 最小的成本让着N个顶点连通
    • 只能使用恰好n-1条边来连接图中的n个顶点
    • 选用的n-1条边不能构成回路
  • 构造最小生成树的方法:Kruskal算法和Prim算法,这两个算法都采用了逐步求解的贪心策略
  • 贪心算法:
    • 指在问题求解时,总是做出当前看起来最好的选择
      • 即:贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解
    • 贪心算法不是对所有的问题都能得到整体最优解

1.Kruskal算法

  • 任给一个有n个顶点的连通网络 N = { V , E } N=\{V,E\} N={V,E}
    • 首先构造一个由这n个顶点组成、不含任何边的图 G = { V , N U L L } G=\{V,NULL\} G={V,NULL},其中每个顶点自成一个连通分量
    • 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中
      • 如此重复,直到所有顶点在同一个连通分量上为止
    • 核心每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树
      • Kruskal算法是一种全局贪心的算法
  • 如何判断是否形成环?
    • 并查集
  • 在下图执行Kruskal算法的过程
    • 加了阴影的边属于不断增长的森林A
    • 该算法按照边的权重大小依次进行考虑,箭头指向的边是算法每一步考察的边
      • 如果该条边将两颗不同的树连接起来,它就被加入到森林里,从而完成对两棵树的合并
        请添加图片描述
W Kruskal(Self& minTree)
{size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 建堆排序for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (i < j && _matrix[i][j] != MAX_W){minQueue.push(Edge(i, j, _matrix[i][j]));}}}// 选出n-1条边size_t size = 0;W totalW = W();UnionFindSet ufs(n);while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 判环 -> 并查集if (!ufs.InSameSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti); // 入集size++;totalW += min._w;}else{cout << "Forming Ring: ";cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;}}if (size == n - 1){return totalW;}else{return W();}
}

2.Prim算法

  • Prim算法的一个性质集合A中的边总是构成一棵树,这棵树从一个任意的根节点r开始,一直长大到覆盖V中的所有结点时为止
    • Prim算法思路天然避环
    • 算法每一步在连续集合A和A之外的结点的所有边中,选择一条轻量级边加入到A中
    • 本策略也属于贪心策略,因为每一步所加入的边都必须是使树的总权重增加量最小的边
      • Prim算法是一种局部贪心算法
  • 在下图执行Prim算法的过程
    • 初始的根节点为a,加阴影的边和黑色的结点都属于树A
    • 在算法的每一步,树中的结点就决定了图的一个切割,横跨该切割的一条轻量级边被加入到树中
    • **例如:**在途中第二步,该算法可以选择将边 ( b , c ) (b, c) (b,c)加入到树中,也可以将边 ( a , h ) (a, h) (a,h)加入到树中,因为这两条边都是横跨该切割的轻量级边
      请添加图片描述
W Prim(Self& minTree, const W& src)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}// true & false表示该元素是否在该集合内vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;// 从X->Y集合中连接的边里面选出最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 先把srci连接的边添加到队列中for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){minQueue.push(Edge(srci, i, _matrix[srci][i]));}}size_t size = 0;W totalW = W();while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 最小边的目标也在X集合,则构成环if (X[min._dsti]){cout << "Forming Ring:";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);X[min._dsti] = true;Y[min._dsti] = false;size++;totalW += min._w;// 可能最小生成树已经生成,但是多了很多成环边,无须继续遍历if (size == n - 1){break;}// 将目标顶点连接的边加入到队列中for (size_t i = 0; i < n; i++){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minQueue.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}// 实际不一定存在最小生成树if (size == n - 1){return totalW;}else{return W();}
}
http://www.lryc.cn/news/386625.html

相关文章:

  • 退市新规解读—财务类强制退市
  • 小程序的生命周期使用方法和应用场景
  • 什么是C++模块化系统?C++20的模块化系统。
  • 智慧校园-档案管理系统总体概述
  • 文心一言 VS 讯飞星火 VS chatgpt (290)-- 算法导论21.3 3题
  • 逻辑回归梯度推导
  • Python 使用函数输出一个整数的逆序数
  • 【Linux】Wmware Esxi磁盘扩容
  • 树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标
  • MySQL之如何定位慢查询
  • Open3D 删除点云中重复的点
  • 填报志愿选专业是兴趣重要还是前景重要?
  • python开发基础——day9 函数基础与函数参数
  • STM32——使用TIM输出比较产生PWM波形控制舵机转角
  • 第十五章 集合(set)(Python)
  • 面试-javaIO机制
  • 在.NET Core中,config和ConfigureServices的区别和作用
  • App Inventor 2 如何实现多个定时功能?
  • 技术驱动的音乐变革:AI带来的产业重塑
  • 重生之我要学后端0--HTTP协议和RESTful APIs
  • 深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络
  • AI Infra简单记录
  • 三英战吕布 | 第5集 | 温酒斩华雄 | 竖子不足与谋 | 三国演义 | 逐鹿群雄
  • 【C语言】自定义类型:结构体
  • 算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
  • [每周一更]-(第103期):GIT初始化子模块
  • 单例模式---线程安全实现
  • Agent技术在现代软件开发与应用中的探索
  • c语言中extern定义和引用其他文件的变量,(sublime text)单独一个文件编译不会成功
  • 时序数据中的孤立野点、异常值识别及处理方法