当前位置: 首页 > news >正文

堆的实现详解

目录

  • 1. 堆的概念和特点
  • 2. 堆的实现
    • 2.1 堆向下调整算法
    • 2.2堆的创建
    • 2.3 建堆时间复杂度
    • 2.4 堆的插入
    • 2.5 堆的删除
    • 2.6 堆的代码实现
      • 2.6.1 结构体
      • 2.6.2 初始化
      • 2.6.3 销毁
      • 2.6.4 插入
      • 2.6.5 删除
      • 2.6.6 获取堆顶
      • 2.6.7 判空
      • 2.6.8 个数
      • 2.6.9 向上调整
      • 2.6.10 向下调整
      • 3. 堆的实现测试
        • 测试1
        • 测试2
        • 测试3
        • 测试4
        • 向上调整建堆测试5
        • 向下调整建堆测试6
    • 4. 堆的应用
      • 4.1 堆排序
      • 4.2 TOP-K问题
  • 5. test.c文件
  • 6. Heap.c
  • 7. Heap.h

1. 堆的概念和特点

  1. 定义:
    堆通常可以被看作是一棵完全二叉树的数组对象。这意味着堆的物理结构本质上是顺序存储的(线性的),但在逻辑上则表现为完全二叉树的逻辑存储结构。
    堆总是满足堆性质:堆中某个结点的值总是不大于(最大堆)或不小于(最小堆)其父结点的值。
  2. 分类:
    根据堆顶元素的大小,堆可以分为最大堆(大根堆)和最小堆(小根堆)。最大堆的根结点值是所有元素中的最大值,而最小堆的根结点值是所有元素中的最小值。
    常见的堆类型还包括二叉堆和斐波那契堆等。
  3. 结构:
    堆的物理结构是一维数组,数组的容量和元素个数是堆的重要属性。
    在堆中,一个结点的父节点可以通过该结点的索引值整除2得到

2. 堆的实现

2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

在这里插入图片描述

2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

在这里插入图片描述

2.3 建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的
就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
因此:建堆的时间复杂度为O(N)。

2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
在这里插入图片描述

2.5 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
在这里插入图片描述

2.6 堆的代码实现

2.6.1 结构体

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;

2.6.2 初始化

//初始化
void HeapInit(HP* php)
{assert(php);php->a = NULL;php->capacity = 0;php->size = 0;
}

2.6.3 销毁

//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = 0;php->size = 0;
}

2.6.4 插入

//插入
void HeapPush(HP* php, HPDataType x)
{assert(php);//扩容if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("HeapPush");return;}php->a = tmp;php->capacity = newCapacity;}//插入数据php->a[php->size] = x;php->size++;//向上调整AdjustUp(php->a, php->size - 1);
}

2.6.5 删除

//删除堆顶的数据
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

2.6.6 获取堆顶

//获取堆顶
HPDataType HeapTop(HP* php)
{assert(php);assert(!HeapEmpty(php));return php->a[0];
}

2.6.7 判空

//判空
bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

2.6.8 个数

//个数
int HeapSize(HP* php)
{assert(php);return php->size;
}

2.6.9 向上调整

//向上调整
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent; parent = (child - 1) / 2;}else{break;}}
}

2.6.10 向下调整

//向下调整
void AdjustDown(int* a, int n, int parent)
{//假设最小int child = parent * 2 + 1;while (child < n){//选出左右孩子小的那个if (child+1 < n && a[child + 1] < a[child]){child++;}//不用管哪个最小if (a[child] < a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}

3. 堆的实现测试

测试1
//堆的实现测试
void HeapTest1()
{HP hp;HeapInit(&hp);int a[] = { 65,100,70,32,50,60 };int sz = sizeof(a) / sizeof(a[0]);for (int i = 0; i < sz; i++){HeapPush(&hp, a[i]);}HeapDestroy(&hp);
}

在这里插入图片描述

测试2
void HeapTest1()
{HP hp;HeapInit(&hp);int a[] = { 65,100,70,32,50,60 };int sz = sizeof(a) / sizeof(a[0]);for (int i = 0; i < sz; i++){HeapPush(&hp, a[i]);}HeapPop(&hp);HeapDestroy(&hp);
}

在这里插入图片描述

测试3
void HeapTest1()
{HP hp;HeapInit(&hp);int a[] = { 65,100,70,32,50,60 };int sz = sizeof(a) / sizeof(a[0]);for (int i = 0; i < sz; i++){HeapPush(&hp, a[i]);}//HeapPop(&hp);while (!HeapEmpty(&hp)){int top = HeapTop(&hp);printf("%d\n", top);HeapPop(&hp);}HeapDestroy(&hp);
}

在这里插入图片描述

测试4
//top-k问题
//方法1:弊端: 先有一个堆太麻烦,空间复杂度高还得拷贝数据。
void HeapSort(int* a, int n)
{HP hp;HeapInit(&hp);for (int i = 0; i < n; i++){HeapPush(&hp, a[i]);}int i = 0;while (!HeapEmpty(&hp)){int top = HeapTop(&hp);a[i++] = top;HeapPop(&hp);}HeapDestroy(&hp);
}

在这里插入图片描述

向上调整建堆测试5
void HeapSort2(int* a, int n)
{//升序-- 建小堆//降序-- 建大堆//向上调整建堆for (int i = 1; i < n; i++){AdjustUp(a, i);}//向下调整建堆/*for (int i = (n - 1 - 1) / 2; i >= 0; --i){AdjustDown(a, n, i);}*/int end = n - 1;while (end > 0){//交换Swap(&a[0], &a[end]);//再调整,选出次小的AdjustDown(a, end, 0);end--;}
}

在这里插入图片描述

向下调整建堆测试6
//方法2
void HeapSort2(int* a, int n)
{//升序-- 建小堆//降序-- 建大堆//向上调整建堆/*for (int i = 1; i < n; i++){AdjustUp(a, i);}*///向下调整建堆for (int i = (n - 1 - 1) / 2; i >= 0; --i){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){//交换Swap(&a[0], &a[end]);//再调整,选出次小的AdjustDown(a, end, 0);end--;}
}

在这里插入图片描述

4. 堆的应用

4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
    升序:建大堆
    降序:建小堆
  2. 利用堆删除思想来进行排序
    建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
    在这里插入图片描述

4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

5. test.c文件

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"//堆的实现测试
void HeapTest1()
{HP hp;HeapInit(&hp);int a[] = { 65,100,70,32,50,60 };int sz = sizeof(a) / sizeof(a[0]);for (int i = 0; i < sz; i++){HeapPush(&hp, a[i]);}//HeapPop(&hp);while (!HeapEmpty(&hp)){int top = HeapTop(&hp);printf("%d\n", top);HeapPop(&hp);}HeapDestroy(&hp);
}//top-k问题
//方法1:弊端: 先有一个堆太麻烦,空间复杂度高还得拷贝数据。
void HeapSort(int* a, int n)
{HP hp;HeapInit(&hp);for (int i = 0; i < n; i++){HeapPush(&hp, a[i]);}int i = 0;while (!HeapEmpty(&hp)){int top = HeapTop(&hp);a[i++] = top;HeapPop(&hp);}HeapDestroy(&hp);
}//方法2
void HeapSort2(int* a, int n)
{//升序-- 建小堆//降序-- 建大堆//向上调整建堆for (int i = 1; i < n; i++){AdjustUp(a, i);}//向下调整建堆/*for (int i = (n - 1 - 1) / 2; i >= 0; --i){AdjustDown(a, n, i);}*/int end = n - 1;while (end > 0){//交换Swap(&a[0], &a[end]);//再调整,选出次小的AdjustDown(a, end, 0);end--;}
}int main()
{//HeapTest1();int a[] = { 7,8,3,5,1,9,5,4 };HeapSort2(a, sizeof(a) / sizeof(a[0]));return  0;
}

6. Heap.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"//初始化
void HeapInit(HP* php)
{assert(php);php->a = NULL;php->capacity = 0;php->size = 0;
}//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = 0;php->size = 0;
}//交换
void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p2;*p2 = *p1;*p1 = tmp;
}//向上调整
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent; parent = (child - 1) / 2;}else{break;}}
}//插入
void HeapPush(HP* php, HPDataType x)
{assert(php);//扩容if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("HeapPush");return;}php->a = tmp;php->capacity = newCapacity;}//插入数据php->a[php->size] = x;php->size++;//向上调整AdjustUp(php->a, php->size - 1);
}//向下调整
void AdjustDown(int* a, int n, int parent)
{//假设最小int child = parent * 2 + 1;while (child < n){//选出左右孩子小的那个if (child+1 < n && a[child + 1] < a[child]){child++;}//不用管哪个最小if (a[child] < a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}//删除堆顶的数据
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}//获取堆顶
HPDataType HeapTop(HP* php)
{assert(php);assert(!HeapEmpty(php));return php->a[0];
}//判空
bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}//个数
int HeapSize(HP* php)
{assert(php);return php->size;
}

7. Heap.h

#pragma once#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;//初始化
void HeapInit(HP* php);//销毁
void HeapDestroy(HP* php);//插入
void HeapPush(HP* php, HPDataType x);//删除
void HeapPop(HP* php);//获取堆顶
HPDataType HeapTop(HP* php);//判空
bool HeapEmpty(HP* php);//个数
int HeapSize(HP* php);//向上调整
void AdjustUp(HPDataType* a, int child);//向下调整
void AdjustDown(int* a, int n, int parent);
http://www.lryc.cn/news/383061.html

相关文章:

  • iptables配置NAT实现端口转发
  • 【启明智显产品介绍】Model3C工业级HMI芯片详解专题(一)芯片性能
  • Socket编程【个人简单】
  • java入门 grpc测试案例
  • 【操作系统】信号处理与阻塞函数|时序竞态问题
  • go语言day4 引入第三方依赖 整型和字符串转换 进制间转换 指针类型 浮点数类型 字符串类型
  • IOS Swift 从入门到精通:闭包第二部分,高级闭包
  • 爬虫超详细介绍
  • 双向长短期记忆神经网络BiLSTM
  • python基础篇(4):range语句
  • 基于STM32的简易计算器proteus仿真设计(仿真+程序+设计报告+讲解视频)
  • 小程序onLoad 和 onShow
  • 抖音直播违规规定有哪些?(直播违禁词汇总表)
  • 安卓 jetpack compose
  • JavaWeb系列十九: jQuery的DOM操作 上
  • JavaWeb系列十一: Web 开发会话技术(Cookie, Session)
  • 【激光雷达使用记录】—— 如何在ubuntu中利用ros自带的rviz工具实时可视化雷达点云的数据
  • 运行项目报错(java: 无效的目标发行版: 17)项目jdk版本不兼容,修改Java编译器配置
  • 一道session文件包含题
  • vuex数据持久化
  • MySQL之复制(十)
  • Spring MVC数据绑定和响应——简单数据绑定(一)默认类型数据绑定
  • 短视频平台自动化插件编写需要用到的源代码分享!
  • 安卓下载以来总是要添加maven下载地址,放在哪?
  • springboot多数据源应用,A服务依赖于B服务jar包,A服务和B服务业务数据分别入自己的库如何做?
  • 20240626 每日AI必读资讯
  • C语言经典算法题第一题
  • 计算预卷积特征
  • Python 入门 —— 描述器
  • 测试驱动开发TDD