当前位置: 首页 > news >正文

【数论】试除法判断质数,分解质因数,筛质数

Halo,这里是Ppeua。平时主要更新C语言,C++,数据结构算法......感兴趣就关注我吧!你定不会失望。

 

🌈个人主页:主页链接

🌈算法专栏:专栏链接

     现已更新完KMP算法、排序模板,之后我会继续往里填充内容哒。

🌈LeetCode专栏:专栏链接 

    目前在刷初级算法的LeetBook 。若每日一题当中有力所能及的题目,也会当天做完发出

🌈代码仓库:Gitee链接

🌈点击关注=收获更多优质内容🌈

用一篇Blog来讲解下最近学到的数论,为日后的刷题打下坚实的基础。

目录

试除法判断质数:

朴素做法:

代码模板:

改进做法:

 代码模板:

分解质因数:

 代码模板:

筛质数:

 埃式筛法:

欧拉筛(线性筛):

完结撒花:


什么是质数?

一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数

试除法判断质数:

朴素做法:

将定义进行模拟,若整除了除1与其自身的另外的数,则为质数

代码模板:

#include<iostream>
using namespace std;
int n;
void prime(int x)
{if(x<2){cout<<"No"<<endl;return;}for(int i=2;i<=x;i++){if(x%i==0){cout<<"No"<<endl;return ;}}cout<<"Yes"<<endl;return;
}
int main()
{cin>>n;while(n--){int x;cin>>x;prime(x);}
}

改进做法:

一个数的两个因数都是成对出现的,例如:6的因数为 1 2 3 6 

这里的2与3是成对出现的。所以我们无需从2-x的范围去遍历,因为若前半部分没有出现,则后半部分必然没有其因数

通过反证法:若后半部分有其因数,则就会出现这两个因数相乘会大于其本身。

所以应该满足 i*i<=x的范围,但又因为i*i在数字极大的情况下,很容易溢出,所以改成i<=x/i

 代码模板:

#include<iostream>
using namespace std;
int n;
void prime(int x)
{if(x<2){cout<<"No"<<endl;return;}for(int i=2;i<=x/i;i++){if(x%i==0){cout<<"No"<<endl;return ;}}cout<<"Yes"<<endl;return;
}
int main()
{cin>>n;while(n--){int x;cin>>x;prime(x);}
}

分解质因数:

 

与上文相同,依然是用到了i*i<=n的这个性质,需要注意一下,最多存在一个>=sqrt(n)的质因子,同样可以用反证法来证明,这里就不过多赘述.所以当最后跳出循环时若还存在x>1,也就是没有被模掉的情况时,则认为x为其较大的那个因子,也需要放进去.

若一个数能整除i,则i是其一个因子,又因为我们从小到达进行遍历,被整除的这个i必然为质因子,因为若为普通因子,在循环整除的时候已经被消掉了,化为其指数.

 代码模板:

#include<iostream>
using namespace std;
void divide(int x)
{for(int i=2;i<=x/i;i++)if(x%i==0){int s=0;while(x%i==0){x/=i;s++;}printf("%d %d\n",i,s);}if(x>1)printf("%d %d\n",x,1);puts("");return ;
}
int main()
{int n=0;cin>>n;while(n--){int x;cin>>x;divide(x);}return 0;
}

筛质数:

 

 埃式筛法:

一个约数其必然可以由数相乘得到.

假设有如下2到10的数

埃式筛法的核心就是:从头遍历每个数字,将其与每一个小于本身它本身的质数相乘,再将之后的数标记为非质数

也就是这样

 可以看出 这里的质数就为2 3 5 7,

但我们很快就会发现,这个算法有一个弊端,假设这里的范围到12,就会出现当4*3的时候把十二标记为false了,但6*2又会将其标记一次,十分的不优雅.

所以就提出了另一个改进的算法

欧拉筛(线性筛):

当发现相乘的这个质数为其最小质因子时,则停止遍历

#include<iostream>
using namespace std;
const int N=1e6+9;
bool st[N];
int prime[N];
int main()
{int n=0;int cnt=0;cin>>n;for(int i=2;i<=n;i++){if(!st[i]){prime[cnt++]=i;}for(int j=0;prime[j]<=n/i;j++){st[prime[j]*i]=true;if(i%prime[j]==0)break;}}cout<<cnt;
}

完结撒花:

🌈本篇博客的内容【数论:试除法判断质数,分解质因数,筛质数】已经结束。

🌈若对你有些许帮助,可以点赞、关注、评论支持下博主,你的支持将是我前进路上最大的动力。

🌈若以上内容有任何问题,欢迎在评论区指出。若对以上内容有任何不解,都可私信评论询问。

🌈诸君,山顶见!

http://www.lryc.cn/news/38235.html

相关文章:

  • 【C++】红黑树
  • 【剧前爆米花--爪哇岛寻宝】进程的调度以及并发和并行,以及PCB中属性的详解。
  • 网络的瓶颈效应
  • 【C++进阶】四、红黑树(三)
  • Spring——AOP切入点表达式和AOP通知类型
  • Hadoop学习:Yarn
  • Spring Data JPA
  • java List报错Method threw ‘java.lang.UnsupportedOperationException‘ exception. 解决
  • 数据结构-用栈实现队列
  • 第十四章 从 Windows 客户端控制 IRIS
  • 数据结构---双链表
  • Windows 环境安装Scala详情
  • C++ Qt自建网页浏览器
  • Flink从入门到精通系列(四)
  • Nginx 配置实例-反向代理案例一
  • 为什么北欧的顶级程序员数量远超中国?
  • vuex getters的作用和使用(求平均年龄),以及辅助函数mapGetters
  • 20230311给Ubuntu18.04下的GTX1080M安装驱动
  • 2023腾讯面试真题:
  • 23种设计模式-建造者模式(Android应用场景介绍)
  • English Learning - L2 语音作业打卡 双元音 [ʊə] [eə] Day17 2023.3.9 周四
  • 【动态规划】多重背包问题,分组背包问题
  • JAVA面向对象特征之——封装
  • 【数据结构】二叉树相关OJ题
  • Windows安装Hadoop
  • ICG-Hydrazide,吲哚菁绿-酰肼,ICG-HZ结构式,溶于二氯甲烷等部分有机溶剂,
  • 【论文阅读】浏览器扩展危害-Helping or Hindering? How Browser Extensions Undermine Security
  • 线性和非线性最小二乘问题的常见解法总结
  • 数据库知识点
  • Maven打包构建Docker镜像并推送到仓库