当前位置: 首页 > news >正文

【python】python海底捞门店营业数据分析与可视化(数据集+源码+论文)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


python海底捞门店数据分析与可视化(数据集+源码+论文)【独一无二】


目录

  • python海底捞门店数据分析与可视化(数据集+源码+论文)【独一无二】
  • 一、设计要求
        • 项目背景
        • 主要功能
  • 二、设计思路
      • 1. 导入库和设置
      • 2. 读取数据
      • 3. 数据预览和基本信息
      • 4. 处理缺失值
      • 5. 处理异常值
      • 6. 处理重复值
      • 7. 数据转换
      • 8. 数据分组和统计分析
      • 9. 数据可视化
      • 总结


一、设计要求

项目背景

本项目旨在通过数据分析和可视化的方法,对海底捞门店的营业数据进行深入的探索和理解。数据来源于Excel文件《海底捞门店数据.xlsx》。项目包括数据预处理、缺失值处理、异常值处理、重复值处理、数据转换、分组统计分析和数据可视化。

主要功能
  1. 数据读取与预览

    • 从Excel文件中读取数据,展示数据的前几行,提供数据的基本信息,包括行列数、数据类型和非空数统计。
  2. 缺失值处理

    • 统计数据中的缺失值总数。
    • 提供两种处理缺失值的方法:删除含有缺失值的记录和用众数填充缺失值。
  3. 异常值处理

    • 使用箱型图可视化数据,识别异常值。
    • 提供两种去除异常值的方法:四分位数间距法(IQR)和3σ原则。
  4. 重复值处理

    • 检查并删除数据中的重复值。
  5. 数据转换

    • 将“省份”列转换为数值型数据,便于后续分析。
  6. 分组统计分析

    • 按省份分组统计各省店铺数量。
    • 按营业时长分组统计各时长区间内的店铺数量。
  7. 数据可视化

    • 可视化各省店铺数量分布。
    • 可视化营业时长分布。
    • 可视化开始营业时间分布。
    • 可视化结束营业时间分布。

二、设计思路

1. 导入库和设置

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsplt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
  • 导入必要的库:pandas用于数据处理,matplotlibseaborn用于数据可视化。
  • 设置绘图时中文字体的显示,确保中文标签能正常显示。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

2. 读取数据

file_path = '海底捞门店数据.xlsx'
df = pd.read_excel(file_path, engine='openpyxl')
  • 从Excel文件中读取数据到一个DataFrame中。

3. 数据预览和基本信息

print("数据预览:")
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈print("缺失值总数:")
print(df.isnull().sum())

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

  • 打印数据的前几行,显示数据的基本信息(行列数、数据类型和非空数)。
  • 统计缺失值的总数。

4. 处理缺失值

# 删除含有缺失值的记录
# 代码略....
print(df_dropna.isnull().sum())# 用众数填充缺失值
df_fillna = df.fillna(df.mode().iloc[0])
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈
print(df_fillna.isnull().sum())
  • 处理缺失值的方法包括:
    • 删除含有缺失值的记录。
    • 用众数填充缺失值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

5. 处理异常值

# 箱型图识别异常值
plt.figure(figsize=(10, 6))
# 代码略....
plt.show()# 四分位数间距法去除异常值
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈IQR = Q3 - Q1
df_no_outliers = df[~((df['营业时长'] < (Q1 - 1.5 * IQR)) | (df['营业时长'] > (Q3 + 1.5 * IQR)))]
print("去除异常值后的数据行列数: ", df_no_outliers.shape)# 3σ原则去除异常值
mean = df['营业时长'].mean()
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈print("3σ原则去除异常值后的数据行列数: ", df_no_outliers_sigma.shape)

在这里插入图片描述

  • 使用箱型图可视化数据,识别异常值。
  • 使用四分位数间距法(IQR)和3σ原则去除异常值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

6. 处理重复值

df_no_duplicates = df.drop_duplicates()
print("删除重复值后的数据行列数: ", df_no_duplicates.shape)
  • 删除重复值。

7. 数据转换

# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈
print("转换后的数据预览:")
print(df.head())
  • 将“省份”列转换为数值型数据,便于后续分析。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

8. 数据分组和统计分析

# 按省份分组统计各省店铺数量
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈print("按省份分组统计:")
print(province_group)
# 按营业时间长度分组统计
time_group = df.groupby('营业时长')['店名'].count().reset_index()
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈print("按营业时间长度分组统计:")
print(time_group)

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

  • 按省份和营业时长分组,统计各组的店铺数量。

9. 数据可视化

# 店铺数量按省份分布
plt.figure(figsize=(14, 7))
# 代码略....
# 代码略....
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

# 营业时长分布
plt.figure(figsize=(10, 6))
# 代码略....
# 代码略....
plt.show()

在这里插入图片描述

# 开始营业时间分布
plt.figure(figsize=(10, 6))
# 代码略....
# 代码略....
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

# 结束营业时间分布
# 代码略....
# 代码略....
plt.show()
  • 可视化数据,展示各省店铺数量分布、营业时长分布、开始营业时间分布和结束营业时间分布。

在这里插入图片描述

总结

这段代码通过读取、预览、处理和分析数据,最后进行可视化展示。其设计思路清晰、结构完整,覆盖了数据处理和分析的多个方面,包括缺失值处理、异常值处理、重复值处理、数据转换、数据分组统计和数据可视化。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈


http://www.lryc.cn/news/380427.html

相关文章:

  • 利用机器学习弄懂机器学习!
  • Ubuntu22.04系统安装及配置
  • 抖音多功能全自动引流工具,支持评论关注私信留痕点赞等,让你的抖音粉丝暴涨!
  • day3-xss漏洞(米斯特web渗透测试)
  • HTML中的<iframe>标签及其属性
  • Elastisearch集群(单节点)
  • Vue78-缓存路由组件
  • windows设置开机启动项
  • 【Linux】 yum学习
  • Mac数据如何恢复?3 款最佳 Mac 恢复软件
  • 基于SpringBoot+Vue航空票务管理系统设计和实现(源码+LW+调试文档+讲解等)
  • Gnu/Linux 之 C 语言函数列表初步整理
  • Java学习 (二)关键字、标识符、数组
  • 数据结构与算法笔记:基础篇 - 初始动态规划:如何巧妙解决“双十一”购物时的凑单问题?
  • 使用 select 进行 UART 通信的注意事项
  • 干货 | 2024低空经济产业发展白皮书(免费下载)
  • 打开nginx连接的php页面报错502
  • Qt之文件操作(QFile、QFileInfo、QTemporaryFile)
  • Python爬虫初试
  • ARM-V9 RME(Realm Management Extension)系统架构之系统初始化流程
  • 软件工程考试题备考
  • 一款基于WordPress开发的高颜值的自适应主题Puock
  • 浙教版 七年级下册 科学复习干货
  • 罗盘时钟lua迷你世界
  • 【Java】Java基础语法
  • 利用golang_Consul代码实现Prometheus监控目标的注册以及动态发现与配置
  • Python爬虫介绍
  • Linux 进程管理
  • 【车载测试】CAN协议、CAN- FD协议和FlexRay协议 区别
  • 对日期的处理