当前位置: 首页 > news >正文

利用LinkedHashMap实现一个LRU缓存

一、什么是 LRU

LRU是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰

简单的说就是,对于一组数据,例如:int[] a = {1,2,3,4,5,6},如果1,2这几个数字经常被使用,那么会排在3,4,5,6的后面,数组变成如下:int[] a = {3,4,5,6,1,2},如果一个数字,经常不被使用,就会排在最前面!

LRU 算法,一般用于热点数据的查询,比如新闻信息,越是能被用户看得多的新闻,越有可能被别的用户所看到,对于那种基本没人访问的新闻,基本都类似存入大海!

在 Java 中,就有这么一个集合类实现了这个功能,它就是LinkedHashMap

二、LinkedHashMap 实现介绍

我们都知道,在java集合中,LinkedHashMap 继承自 HashMap,底层是一个双向链表的数据结构,与 HashMap 不同的是,LinkedHashMap 初始化阶段有个参数accessOrder ,默认是false

public class LinkedHashMap<K,V>extends HashMap<K,V>implements Map<K,V>{/**双向链表的头节点*/transient LinkedHashMap.Entry<K,V> head;/**双向链表的尾节点*/transient LinkedHashMap.Entry<K,V> tail;/*** 1、如果accessOrder为true的话,则会把访问过的元素放在链表后面,放置顺序是访问的顺序* 2、如果accessOrder为false的话,则按插入顺序来遍历*/final boolean accessOrder;
}

如果传入的是true,则会把最近访问过的元素放在链表后面,放置顺序是访问的顺序,测试如下:

public static void main(String[] args) {//accessOrder默认为falseMap<String, String> accessOrderFalse = new LinkedHashMap<>();accessOrderFalse.put("1","1");accessOrderFalse.put("2","2");accessOrderFalse.put("3","3");accessOrderFalse.put("4","4");System.out.println("acessOrderFalse:"+accessOrderFalse.toString());//accessOrder设置为trueMap<String, String> accessOrderTrue = new LinkedHashMap<>(16, 0.75f, true);accessOrderTrue.put("1","1");accessOrderTrue.put("2","2");accessOrderTrue.put("3","3");accessOrderTrue.put("4","4");accessOrderTrue.get("2");//获取键2accessOrderTrue.get("3");//获取键3System.out.println("accessOrderTrue:"+accessOrderTrue.toString());
}

输出结果如下:

acessOrderFalse:{1=1, 2=2, 3=3, 4=4}
accessOrderTrue:{1=1, 4=4, 2=2, 3=3}

可以得知,当我们将accessOrder设置为true的时候,经常被访问的元素会放入前面!

我们利用这个特性,使用 LinkedHashMap 来实现一个 LRU 缓存,操作如下:

  • 创建一个 LinkedHashMap 对象,将accessOrder设置为true
  • 设定 LinkedHashMap 的容量为n,超过这个值就删除多余的元素;
  • 重写 LinkedHashMap 中removeEldestEntry()方法;

其中removeEldestEntry()表示,如果返回的是true,就会移除最近不被使用的元素,如果返回false,不做任何操作,这个方法每次在add()的时候就会调用。

创建一个 LRU 缓存类,内容如下:

public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {//创建一个容量为3的LinkedHashMapprivate static final int MAX_SIZE = 3;/*** 重写LinkedHashMap中removeEldestEntry方法* @param eldest* @return*/protected boolean removeEldestEntry(Map.Entry eldest) {//如果容器中的元素个数大于MAX_SIZE,在每次添加元素的时候,移除容器中最近不被使用的元素return size() > MAX_SIZE;}public LRULinkedHashMap() {//设置LinkedHashMap初始化容量,负载因子为0.75f,accessOrder设置为truesuper(MAX_SIZE, 0.75f, true);}
}

测试使用:

public static void main(String[] args) {LRULinkedHashMap<String,String> cache = new LRULinkedHashMap<String,String>();cache.put("1","a");cache.put("2","b");cache.put("3","c");System.out.println("初始cache内容:" + cache.toString());cache.get("2");System.out.println("查询key为2的元素之后,cache内容:" + cache.toString());cache.put("4","d");System.out.println("添加新的元素之后,cache内容:" + cache.toString());
}

输出结果如下:

初始cache内容:{1=a, 2=b, 3=c}
查询key为2的元素之后,cache内容:{1=a, 3=c, 2=b}
添加新的元素之后,cache内容:{3=c, 2=b, 4=d}

三、小结

在实际的业务开发过程中,LRU 算法应用比较广泛,比如热点排行榜,设置容量为3的时候,会将不常用的新闻移除,保留最新的热点信息。

写到最后

不会有人刷到这里还想白嫖吧?点赞对我真的非常重要!在线求赞。加个关注我会非常感激!

本文已整理到技术笔记中,此外,笔记内容还涵盖 Spring、Spring Boot/Cloud、Dubbo、JVM、集合、多线程、JPA、MyBatis、MySQL、微服务等技术栈。

需要的小伙伴可以点击 技术笔记 获取!

http://www.lryc.cn/news/380047.html

相关文章:

  • git-pull详解
  • 【SQL】count(1)、count(*) 与 count(列名) 的区别
  • 03-ES6新语法
  • Linux中的文本编辑器vi与vim
  • MATLAB基础应用精讲-【数模应用】三因素方差(附R语言、MATLAB和python代码实现)
  • Linux ubuntu安装pl2303USB转串口驱动
  • 关于使用命令行打开wps word文件
  • 将Vite添加到您现有的Web应用程序
  • Apache Kafka与Spring整合应用详解
  • SpringBoot配置第三方专业缓存技术Redis
  • javascript的toFixed()以及使用
  • 软件功能测试和性能测试包括哪些测试内容?又有什么联系和区别?
  • 从工具产品体验对比spark、hadoop、flink
  • 【软件设计】详细设计说明书(word原件,项目直接套用)
  • java本地缓存(map,Guava,echcache,caffeine)优缺点,以及适用场景
  • Monica
  • 国产数据库中读写分离实现机制
  • kubernetes部署dashboard
  • FPGA早鸟课程第二弹 | Vivado 设计静态时序分析和实际约束
  • STM32项目分享:家庭环境监测系统
  • 华为HCIP Datacom H12-821 卷5
  • Mongodb数据库基本操作
  • 【机器学习】基于Softmax松弛技术的离散数据采样
  • .NET+Python量化【1】——环境部署和个人资金账户信息查询
  • 洛谷 P10584 [蓝桥杯 2024 国 A] 数学题(整除分块+杜教筛)
  • 深入讲解C++基础知识(一)
  • Python爬虫实战:批量下载网站图片
  • 使用 JavaScript 获取电池状态
  • java—类反射机制
  • 浏览器-服务器架构 (BS架构) 详解