当前位置: 首页 > news >正文

【yolov8语义分割】跑通:下载yolov8+预测图片+预测视频

1、下载yolov8到autodl上

git clone https://github.com/ultralytics/ultralytics

9897843710a64b2e8a30c38afdda206d.png

下载到Yolov8文件夹下面

另外:现在yolov8支持像包一样导入,pip install就可以
 

2、yolov8 语义分割文档

23f8251f90db4bf9b86911d4ec826da2.png

看官方文档:主页 -Ultralytics YOLO 文档

还能切换成中文版本,真友好。

看以下yolov8语义分割的文档:Segment - Ultralytics YOLO Docs

YOLOv8 Segment 模型使用 -seg 后缀,比如 yolov8n-seg.pt ,然后官方是在 COCO数据集上进行预训练。

不同yolov8分割模型的参数:

d4c4b085ea194711a2dcf1daf0993627.png

用pycharm连接远程服务器:

1cf4e92722c346458e0d1afb569ee5de.png

然后,我根据官方提示,在根目录下面都没有这个模块,查了下,说yolov8都没有requiment.txt的文档,他是把所有东西都放在ultralytics包下面,所以直接pip install ultralytics,那么,在下这个包之前,先在autodl上面,新建一个虚拟环境,把项目的包直接下载在这里面,不然就会出现如下提示:

5f92ec5fbc3842df9a2d49987807487f.png

223325e2cb444238bbc46f7b79d419eb.png

 

创建虚拟环境,名字是yolov8

root@autodl-container-97b611a952-679739f5:~# python -m venv yolov8
root@autodl-container-97b611a952-679739f5:~# source yolov8/bin/activate
(yolov8) root@autodl-container-97b611a952-679739f5:~# pip list
7263c2fc762346f5a3fb03956da53234.png

然后提示我pip要更新了,根据提示去更新先:

2fc835287e574f598ba569f5fdd19654.png更新好了,现在也在yolov8虚拟环境下了。

我在autodl上,把yolov8下载在Yolov8文件夹下面的1:

b030c47c93b144deaea7378be4f743cc.png

所以,我先进入这个文件夹下

(yolov8) root@autodl-container-97b611a952-679739f5:~# cd Yolov8
(yolov8) root@autodl-container-97b611a952-679739f5:~/Yolov8# cd ultralytics
 

好了,开始吧!

1、先下载:pip install ultralytics,这一步就相当于之前安装requirements,现在是都放在ultralytics下面了。

36565da05a2f47028ee1e2e88de9b6cf.png

2、载入刚刚下载的ultralytics

如果是在终端打开的,记得,先进入python

import ultralytics

import torch

torch.cuda.is_available()  #检查torch是否可用,返回true才意味着可以用torch,在gpu打开

 

先直接进行预测

中间下载torch的时候突然跳出去了,然后重新进入yolov8的虚拟环境,一定注意是root目录下的,也就是说,在哪个目录下创建的虚拟环境,就从哪里进入,

source yolov8/bin/activate

bd98266afa304e32984fd343b99b299c.png

然后conda list 看看有没有安装好yolov8

7014824ee25f4e6a8ec7b1012b9c8199.png

可以看到安装了。

现在先用官方给的图片,预测一张图的语义分割,看看什么效果:

yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg'

30d70ca06b74411eb7f82342123b2e78.png

可以看到,她是先下载了yolov8n-seg.pt模型,存在根目录下,然后,直接下载网站的图片,对bus这个图进行预测。注意存放位置。

cbeb2273d4df440fb0be80f99de2f586.png

她还给出了预测的结果,说有4个人一个bus,还有191.2ms的预测时间

然后它说,图片存在runs下面的segment下面的predict了

 

e7d5a23c026f4eae9ac1f3f819dc5f0d.png

 

那现在用自己的图片试一下:

模型就不变了,换个图,注意这个目录一定是对应autodl上的目录分布,

yolo segment predict model=yolov8n-seg.pt source='./gettyimages.jpg'

3fcce1bc0a004604a050dae904858830.png

6c2d96d09ccd4317b1d4844e58ab2ac4.png

结果是这样的。

yolov8还能实时预测摄像头:看一看(运行不了)

yolo segment predict model=yolov8n-seg.pt source=0

 

从yotube下载视频看看:(报错)

先下载包

sudo apt update sudo apt install youtube-dl

pip3 install --upgrade youtube-dl

 youtube-dl https://www.youtube.com/watch?v=Fw3MdwjPyHA -f bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4
ca7e540df6a5443eb623f040024eefa7.png

算了,直接看看本地视频mp4吧:

6e5a8d646df141cca5d26d19cccc40d7.png

avi格式怎么看视频?

48c5de665948471cb6f5474ebb31d3dc.png

截取一帧:

34e263d2a2fd462f9c0821e6e0366848.png

 

http://www.lryc.cn/news/379741.html

相关文章:

  • 基于STM8系列单片机驱动74HC595驱动两个3位一体的数码管
  • Jlink下载固件到RAM区
  • Kotlin基础——Typeclass
  • DC-DC 高压降压、非隔离AC-DC、提供强大的动力,选择优质电源芯片-(昱灿)
  • GPT-4o的视觉识别能力,将绕过所有登陆的图形验证码
  • 【LinuxC语言】进程间的通信——管道
  • CompletableFuture 基本用法
  • 网页如何发布到服务器上
  • Jenkins简要说明
  • C# 比较基础知识:最佳实践和技巧
  • Ansible 自动化运维实践
  • 红队攻防渗透技术实战流程:中间件安全:IISNGINXAPACHETOMCAT
  • 如何卸载宝塔面板?
  • python入门基础知识(错误和异常)
  • 迈巴赫S480升级增强现实AR抬头显示hud比普通抬头显示HUD更好用吗
  • vivado、vitis2022安装及其注意事项(省时、省空间)
  • 【自动驾驶】ROS小车系统
  • mysql学习——多表查询
  • 【Gradio】如何设置 Gradio 数据框的样式
  • 【ThreeJS】Threejs +Vue3 开发基础
  • cocos 如何使用九宫格图片,以及在微信小程序上失效。
  • Spring企业开发核心框架
  • Scrum团队在迭代中如何处理计划外的工作
  • 桌面识别技术革新交互,展厅互动体验步入新时代!
  • 书生·浦语大模型LagentAgentLego智能体应用搭建 第二期
  • 具有 Hudi、MinIO 和 HMS 的现代数据湖
  • 32.基于分隔符解决黏包和半包
  • 2024-6-19(沉默springboot)
  • three.js 第八节 - gltf加载器、解码器
  • Aquila-Med LLM:开创性的全流程开源医疗语言模型