当前位置: 首页 > news >正文

不懂索引,简历上都不敢写自己熟悉SQL优化

大家好,我是考哥。

今天给大家带来MySQL索引相关核心知识。对MySQL索引的理解甚至比你掌握SQL优化还重要,索引是优化SQL的前提和基础,我们一步步来先打好地基。

当MySQL表数据量不大时,缺少索引对查询性能的影响不会太大,可能都是0.0几秒;但当表数据量逐日递增时,建立一个合适且优雅的索引就至关重要了。

文章目录

    • 1. 索引类型
      • 1.1 B-Tree索引
      • 1.2 B-Tree值的存储
      • 1.3 哈希索引
      • 1.4 聚簇索引
    • 2. 索引效率
      • 2.1 Explain关键字
      • 2.2 索引失效

1. 索引类型

面试官:索引有什么用?

大家可以把你最近最爱的一本书类比成一个MySQL数据库,你要快速翻到你昨天看到的精彩部分,是不是要先看下书的目录索引,要翻到第几章、第几页。

数据库最主要的就是数据存储,其次就是提供复杂查询服务,而索引就是MySQL作为快速找到记录的一种数据结构。索引类型有多种,像常见的B树索引、哈希索引,这些都需要我们去掌握。

不要和我说你看书都用书签,或者靠手感就能翻出来昨天看到的地方。

我们对比下不采用索引和采用索引的差异。

目前我本机数据库的article表有10w条数据,表结构如下。

CREATE TABLE `article`  (`id` int(10) NOT NULL AUTO_INCREMENT,`author_id` int(10) NULL DEFAULT NULL,`category_id` int(10) NOT NULL DEFAULT 0,`views` int(10) NULL DEFAULT NULL,`comments` int(10) NULL DEFAULT NULL,`title` varbinary(255) NULL DEFAULT NULL,`content` text CHARACTER SET utf8 COLLATE utf8_general_ci NULL,PRIMARY KEY (`id`, `category_id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1001 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

没建立索引前,使用explain关键字分析查询SQL。type显示ALL,也就是该SQL执行时对MySQL进行的是全表扫描。

explain select id from article where category_id = 1 order by views desc;
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+
| id | select_type | table   | type | possible_keys | key  | key_len | ref  | rows | Extra                       |
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+
|  1 | SIMPLE      | article | ALL  | NULL          | NULL | NULL    | NULL | 102279 | Using where; Using filesort |
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+

建立索引后。

create index idx_ca_vi on article(category_id,views);

type显示为ref,同时Extra列显示Using where; Using indexUsing index代表该SQL执行时使用了索引,而Using index代表了在MySQL服务端再进行了一次views字段的排序。

+----+-------------+---------+------+---------------+-----------+---------+-------+------+-------------+
| id | select_type | table   | type | possible_keys | key       | key_len | ref   | rows | Extra       |
+----+-------------+---------+------+---------------+-----------+---------+-------+------+-------------+
|  1 | SIMPLE      | article | ref  | idx_ca_vi     | idx_ca_vi | 4       | const |    51139 | Using where; Using index |
+----+-------------+---------+------+---------------+-----------+---------+-------+------+-------------+

1.1 B-Tree索引

面试官:B树索引说一下?

在杂乱无章的一堆数字里,我要你快速找到唯一的一个数字66,大家要怎么做?

两种选择,你在一堆数字里一个个地找,就如MySQL全表扫描。或者把所有数都按大小顺序进行排列,找到第66个位置的数字。

我们假设建立的是主键索引,MySQL索引会根据主键id建立起一棵B-Tree。B-Tree类似于二叉搜索树,同样具有快速查找特定值的功能。

(1)但在结构方面,B-Tree又不同于二叉搜索树,它是多子树的。即每一个节点可以有两棵以上的子树。

(2)在值的存储方面,B-Tree所有的值都存储在叶子节点。并且每一个叶子节点可以存储多个元素,这一点也与二叉搜索树不同。两个人想要去湖里打水,一个人拿着手大的碗,一个人拿着一个水桶,拿水桶的不会比拿碗的装的少。每个叶子节点存储的元素多,每次磁盘访问就可以获得更多的数据,从而减少查询的I/O操作。

面试官经常会问你这个问题,叶子节点是什么数据结构?。实际上叶子节点之间用指针链接形成了一串双向链表。这个留到下文解释。

(3)另外大家很容易漏掉一个重要的知识点。如果是二级索引建立的B-Tree,每个叶子节点的值保存的是对应行数据的主键。那一级索引叶子节点保存什么呢?一级索引也就是主键索引,下文我会告诉大家。

在这里插入图片描述

1.2 B-Tree值的存储

面试官:你说值都存储在叶子节点,那有什么好处?

数据库数据都存储在叶子节点,会使得非叶子节点层数更少。从外表来看,很明显整棵B-Tree的层数变少,B-Tree高度变得矮胖

B-Tree变得矮胖有什么作用?举个爬楼梯的例子,B-Tee的每一层级就像一层楼。相信大家租房都不想租高楼,每次回去都要爬那么多层楼梯,膝盖怎么受得了呢。

B-Tree每一层的搜索可能就代表了一次磁盘I/O操作,B-Tree的层数变少意味着I/O读取的次数就变少,查询的效率也会因此提高。

另外企业业务在查询上更多的是范围查询,你对网页的每一次翻页操作都是对MySQL数据的一次范围查询。B-Tree的元素都存储叶子节点,同时形成双向链表结构,很适合范围查询这种复杂查询操作。

1.3 哈希索引

面试官:知道为什么主流数据库引擎不采用哈希索引吗?

上文其实已经有涉及到,业务上一般都是范围查询,而哈希索引由于其底层数据结构,不能够支持任何范围查询。这也难怪主流数据库引擎不青睐它。

但其实哈希索引也有它的闪光灯,哈希索引会为所有的索引列计算一个哈希码。同时在哈希表中保存哈希码和指向每个数据行的指针,这种结构对精确匹配查询的效率极高。

MEMORY数据库引擎底层采用的就是哈希索引。

1.4 聚簇索引

面试官:聚簇索引和二级索引有什么关联?

读到这里,我回答下上文还没回答大家的问题。

首先,聚簇索引和主键索引是等同的,也有一个一般都不提的名称:一级索引。

而B-Tree的二级索引指的是非主键索引,它的叶子节点保存的只是行的主键值,所以需要另外通过主键来找到行数据。

聚簇索引通过主键来建树,它的叶子节点包含了行的全部数据

这就把两者相关联起来了,通过二级索引查找行,需要先在二级索引建立的B-Tree上找到主键的值,接着再从聚簇索引建立的B-Tree找到行数据。

2. 索引效率

2.1 Explain关键字

面试官:那我一条SQL,我怎么知道它有没使用到索引?

面试官看你简历写了掌握MySQL,那这道问题就是必考题。

检查是否使用索引可以利用Explain关键字来分析,它会模拟执行sql语句,查询出sql语句执行的相关信息,如哪些索引可以被命中、哪些索引实际被命中。

我说下Explain查询结果的几个关键字段。

  • type

    • cost:通过索引一次查询
    • ref:使用到索引
    • range: 使用到索引
    • all:全表扫描
  • Extra

    • using filesort:使用外部文件排序,发生在无法使用索引的情况下

    • using index:where查询的列索引覆盖,直接通过索引就可以查询到数据

    • using where:where查询的列,没有全部被索引覆盖

    • using join buffer:使用了连接缓存

  • possible_key

    表示可以使用的索引

  • key

    表示实际使用的索引

如果简历你写了精通MySQL,那问的可就没这么简单。我可以问你在工作中紧急处理了哪些数据库重大事故,优化了哪些业务慢SQL、是怎么优化的、为什么这么做。

2.2 索引失效

面试官:有没索引失效的情况呢?

索引失效一般是这个SQL查询破坏了使用B-Tree查询的条件。也有一种可能出现,如果表数据膨胀得太快,即使建立索引你查询起来也会有索引失效的错觉,这个问题就要另外讨论了。

  1. 如果在where子句中使用not in、!=和<>操作,会使索引失效而导致进行全表扫描。

  2. 对索引列进行数学函数处理的话,索引会失效。

  3. 索引是字符串类型,查询值没有添加单引号’'那索引会失效。因为值类型与索引列类型。不一致,MySQL不会使用索引,而是把索引列数据进行类型转换后进行查询。

  4. 对索引列进行模糊查询,%要放在最右侧,否则索引会失效。SELECT * FROM user WHERE name LIKE n%

  5. 在组合索引中,如果前一个索引使用范围查询,后面的索引也会失效。

大家在实际工作切忌乱加索引,此切忌切记。每加一次索引,MySQL都要多去维护一棵新的B-Tree。增加太多索引,数据查询效率会变得低下。

本文收录在我开源的《Java学习面试指南》中,目前已经更新有近200道面试官常考的面试题,涵盖了Java系列、Redis系列、MySQL系列、多线程系列、Kafka系列、JVM系列、ZooKeeper系列等等。GitHub地址:https://github.com/hdgaadd/JavaGetOffer,相信你看了一定会有所收获。

创作不易,不妨点赞、收藏、关注支持一下,各位的支持就是我创作的最大动力❤️

http://www.lryc.cn/news/377545.html

相关文章:

  • C# 设置PDF表单不可编辑、或提取PDF表单数据
  • 面试篇-求两个有序数组的交集
  • Web爬虫-edu_SRC-目标列表爬取
  • 云原生周刊:Harbor v2.11 版本发布 | 2024.6.17
  • 低版本火狐浏览器报错:class is a reserved identifier
  • 掌握高等数学、线性代数、概率论所需数学知识及标题建议
  • value_and_grad
  • AI 已经在污染互联网了。。赛博喂屎成为现实
  • Linux系统安装ODBC驱动,统信服务器E版安装psqlodbc方法
  • 品牌对电商平台价格的监测流程
  • osgearth提示“simple.earth: file not handled”
  • hbuilderx如何打包ios app,如何生成证书
  • 扩散模型荣获CVPR2024最佳论文奖,最新成果让评估和改进生成模型更加效率!
  • 通过CSS样式来禁用href
  • 汽车传动系统为汽车动力总成重要组成部分 我国市场参与者数量不断增长
  • 智慧校园软件解决方案:提升学校管理效率的最佳选择
  • 数据结构之B数
  • 计算机基础必须知道的76个常识!沈阳计算机软件培训
  • 7,KQM模块的驱动
  • 软件验收测试报告模版分享,如何获取专业的验收测试报告?
  • 【arm扩容】docker load -i tar包 空间不足
  • 基于PID的直流电机自动控制系统的设计【MATLAB】
  • MySQL----事务
  • 客观评价,可道云teamOS搭建的企业网盘,如Windows本地电脑一般的使用体验真的蛮不错
  • 当页面中有多个echarts图表的时候,resize不生效的修改方法
  • connect-caption-and-trace——用于共同建模图像、文本和人类凝视轨迹预测
  • iOS API方法弃用警告说明及添加
  • canvas绘制红绿灯路口(二)
  • Semantic Kernel 直接调用本地大模型与阿里云灵积 DashScope
  • 【人工智能】深度解读 ChatGPT基本原理