当前位置: 首页 > news >正文

算法 | 子集数排列树满m叉树二分搜索归并排序快速排序

子集树:O(2^n)

一个序列的所有子集为2^n,即可看成具有2^n个叶节点的满二叉树


int backtrack(int k)     //k表示扩展结点在解空间树中所处的层次
{if(k>n)             //n标识问题的规模output(x);      //x是存放当前解的一维数组if(constraint(k))   //约束函数{  //做相关标识backtrack(k+1)//做相关标识的反操作 }    if(bound(k))       //限定函数{//做相关标识backtrack(k+1)//做相关标识的反操作 }}

常用于:解空间为子集树的常见问题:
(1)0-1背包问题;
(2)子集和问题;
(3)装载问题;
(4)最大团问题。 


排序树:O(n!)

int backtrack(int t)      //t表示扩展结点在解空间树中所处的层次
{if(t>n)              //n标识问题的规模output(x);       //x是存放当前解的一维数组else{for(int i=t;i<=n;i++){swap(x[t],x[i]);              //实现两个位置的交换if(constraint(t)&&bound(t))   //约束函数与限定函数backtrack(t+1)                //递归swap(x[t],x[i]);              //恢复原状}}}

解空间为排列树的常见问题:

(1)n皇后问题;
(2)旅行商问题;
(3)园排列问题;
(4)电路板排列问题。


满m叉树:O(n*m^n)

地图着色问题:

每个元素有M种选择


 二分搜索法:最好:O(1)   最坏:O(logn)

二分搜索法(Binary Search)是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。

最好时间复杂度
在二分搜索法中,如果我们要查找的元素正好是数组的中间元素,那么我们只需要一次比较就能找到它。因此,最好的情况下,二分搜索的时间复杂度是 O(1)。但是,严格来说,我们通常说二分搜索的最好时间复杂度是 O(log n),因为这只是平均情况或最好情况的一种特例,而平均情况或最好情况通常需要 log n 次比较(当 n 是数组的长度时)。

最坏时间复杂度
在二分搜索法中,最坏的情况是我们要查找的元素不在数组中,或者它在数组的最左边或最右边。在这种情况下,我们需要不断地缩小搜索范围,直到搜索范围为空。每次比较,我们都将搜索范围减半,因此,在最坏的情况下,我们需要 log n 次比较(这里 log 是以 2 为底的对数)。所以,二分搜索的最坏时间复杂度是 O(log n)。


归并排序

#include <iostream>  
using namespace std;void Merge(int A[], int low, int mid, int high)
{int* B = new int[high - low + 1];int i = low, j = mid + 1, k = 0;while (i <= mid && j <= high){if (A[i] <= A[j])B[k++] = A[i++];elseB[k++] = A[j++];}while (i <= mid) B[k++] = A[i++];while (j <= high) B[k++] = A[j++];// 修正:复制B到A时,确保k从0开始  for (int p = 0; p < k; p++)A[low + p] = B[p]; // 使用low + p来确保复制到正确的位置  delete[] B; // 释放动态分配的内存  
}void MergeSort(int A[], int low, int high)
{if (low < high){int mid = (low + high) / 2;// 修正:递归调用应该包括mid  MergeSort(A, low, mid);MergeSort(A, mid + 1, high);Merge(A, low, mid, high);}
}int main()
{int a[] = { 1, 2, 54, 25, 76, 23 };int n = sizeof(a) / sizeof(a[0]); // 计算数组长度  MergeSort(a, 0, n - 1); // 修正:传入正确的high值  for (int i = 0; i < n; i++) // 修正:打印所有元素  cout << a[i] << " "; // 添加空格分隔符  cout << endl; // 打印换行符  return 0;
}

这三行代码是归并排序(Merge Sort)算法中的关键步骤。归并排序是一种分治(Divide and Conquer)策略的排序算法。

  1. MergeSort(A, low, mid);

这行代码是递归地调用归并排序函数本身,用于对数组的左半部分进行排序。
2. MergeSort(A, mid + 1, high);

这行代码与第一行类似,但它是用于对数组的右半部分进行排序。
3. Merge(A, low, mid, high);

当左半部分和右半部分都已经被排序后,这行代码用于将这两个已排序的子数组合并成一个已排序的完整数组。


快速排序

void QuickSort(int array[], int low, int high) {int i = low; int j = high;if(i >= j) {return;}int temp = array[low];while(i != j) {while(array[j] >= temp && i < j) {j--;}while(array[i] <= temp && i < j) {i++;}if(i < j) {swap(array[i], array[j]);}}//将基准temp放于自己的位置,(第i个位置)swap(array[low], array[i]);QuickSort(array, low, i - 1);QuickSort(array, i + 1, high);
}

http://www.lryc.cn/news/375524.html

相关文章:

  • SpringBoot配置第三方专业缓存技术jetcache方法缓存方案
  • 游戏开发丨基于PyGame的消消乐小游戏
  • 软件项目管理概述
  • FastAdmin后台开发框架 lang 任意文件读取漏洞复现
  • 数字时代PLM系统的重要性
  • 安卓实现圆形按钮轮廓以及解决无法更改按钮颜色的问题
  • 常用原语介绍
  • 29. 透镜阵列
  • 深入理解并打败C语言难关之一————指针(3)
  • Ubuntu-24.04-live-server-amd64启用ssh
  • Leetcode 2786. 访问数组中的位置使分数最大(DP 优化)
  • 【docker实战】使用Dockerfile的COPY拷贝资源遇到的问题
  • 如何用多线程执行 unittest 测试用例实现方案
  • Ascend310 EP模式下容器内进行推理测试
  • (el-Transfer)操作(不使用 ts):Element-plus 中 Select 组件动态设置 options 值需求的解决过程
  • Java基础之Math与Array类与System
  • 警告:Hydration attribute mismatch on Note: this mismatch is check-only.(水合不匹配)
  • 【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
  • 编程软件是由什么编程的
  • 如何查看自己本地ip
  • 高考分数限制下,选好专业还是选好学校?
  • Django学习(2)项目实战
  • pdf格式转成jpg图片,pdf格式如何转jpg
  • Java的三个接口Comparable,Comparator,Cloneable(浅拷贝与深拷贝)
  • pytorch学习笔记7
  • LeetCode热题3.无重复的最长字串
  • Python武器库开发-武器库篇之SQL注入扫描器(五十九)
  • 图说设计模式:单例模式
  • 探索设计模式——单例模式详解
  • 建筑垃圾/城市固废倾倒转移乱象:EasyCVR+AI智能视频监控方案助力城市环保监管