八股系列 Flink
Flink 和 SparkStreaming的区别
设计理念方面
SparkStreaming:使用微批次来模拟流计算,数据已时间为单位分为一个个批次,通过RDD进行分布式计算
Flink:基于事件驱动,是面向流的处理框架,是真正的流式计算
架构方面
SparkStreaming:角色包括 Master、Worker、Driver、Executor
Flink:角色包括 Jonmanager、Taskmanager和slot
窗口计算方面
SparkStreaming:只支持基于处理时间的窗口操作
Flink:可以支持时间窗口,也支持基于事件的窗口如滑动、滚动、会话窗口等
时间机制方面
SparkStreaming:只支持处理时间,产生数据堆积时候,处理时间和事件时间误差明显
Flink:支持事件时间、注入时间、处理时间,同事支持watermark机制处理迟到的数据,在处理大乱序的实时数据更有优势
容错机制方面
SparkStreaming:基于RDD或对宽依赖添加CheckPoint,利用 SparkStreaming的 direct方式与kafka保证 exactly once
Flink:基于状态添加CheckPoint,通过俩阶段提交协议来保证 exactly once
吞吐量与延迟方面
SparkStreaming:基于微批次的处理使得吞吐量是最大的,但付出了延迟的代价,只能做到秒级处理
Flink:数据是逐条处理,容错机制很轻量级,兼顾了吞吐量的同时又有很低的延迟,支持毫秒级处理
Flink 运行时组件
作业管理器(JobManager)
- 控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个唯一的Jobmanager所控制执行
- Jobmanager会先接收到要执行的应用程序,这个应用程序会包括:作业图( Job Graph)、逻辑数据流图( ogical dataflow graph)和打包了所有的类、库和其它资源的JAR包。
- Jobmanager会把Jobgraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(Executiongraph),包含了所有可以并发执行的任务。Job Manager会向资源管理器(Resourcemanager)请求执行任务必要的资源,也就是任务管理器(Taskmanager)上的插槽slot。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的 Taskmanager上。而在运行过程中Jobmanagera会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
任务管理器(TaskManager)
- Flink中的工作进程。通常在 Flink中会有多个Taskmanager运行,每个Taskmanager都包含了一定数量的插槽(slots)。插槽的数量限制了Taskmanager能够执行的任务数量。
- 启动之后,Taskmanager会向资源管理器注册它的插槽;收到资源管理器的指令后, Taskmanager就会将一个或者多个插槽提供给Jobmanager调用。Jobmanager就可以向插槽分配任务(tasks)来执行了。
- 在执行过程中,一个Taskmanager可以跟其它运行同一应用程序的Taskmanager交换数据。
资源管理器(ResourceManager)
- 主要负责管理任务管理器(TaskManager)的插槽(slot)Taskmanger插槽是Flink中定义的处理资源单元。
- Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、K8s,以及 standalone部署。
- 当Jobmanager申请插槽资源时,Resourcemanager会将有空闲插槽的Taskmanager分配给Jobmanager。如果 Resourcemanager没有足够的插槽来满足 Jobmanager的请求,它还可以向资源提供平台发起会话,以提供启动 Taskmanager进程的容器。
分发器(Dispatcher)
- 可以跨作业运行,它为应用提交提供了REST接口。
- 当一个应用被提交执行时,分发器就会启动并将应用移交给Jobmanage。
- Dispatcher他会启动一个WebUi,用来方便地展示和监控作业执行的信息。
Flink作业提交流程 on Yarn
- Flink任务提交后,Client向HDFS上传Flink的Jar包和配置
- 向ResourceManager请求一个YARN容器启动ApplicationMaster,ApplicationMaster启动后加载Flink的Jar包和配置构建环境
- 启动JobManager,JobManager和ApplicationMaster(AM)运行在同一个容器中
- ApplicationMaster向ResourceManager申请启动TaskManager所需资源
- ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager
- NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager
- TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。
Flink的执行图
Flink 中任务调度执行的图,按照生成顺序可以分成四层: 逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)
逻辑流图(StreamGraph)
这是根据用户通过 DataStream API 编写的代码生成的最初的 DAG 图,用来表示程序的拓扑结构。这一步一般在客户端完成。
作业图(JobGraph)
StreamGraph 经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为: 将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph 一般也是在客户端生成的,在作业提交时传递给 JobMaster。
执行图(ExecutionGraph)
JobMaster 收到 JobGraph 后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是 JobGraph 的并行化版本,是调度层最核心的数据结构。ExecutionGraph 更进一步细化了 JobGraph 中的任务,并考虑了容错、调度等因素。
物理图(Physical Graph)
JobMaster 生成执行图后, 会将它分发给 TaskManager;各个 TaskManager 会根据执行图
部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)。
这只是具体执行层面的图,并不是一个具体的数据结构。
Flink中的并行度(Parallelism)
在 Flink 程序执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。每个算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
任务槽和并行度的关系
- task slot 是静态的概念 ,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;
- 并行度(parallelism)是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
- 换句话说,并行度如果小于等于集群中可用slot的总数,程序是可以正常执行的,因为slot不一定要全部占用,有十分力气可以只用八分;而如果并行度大于可用slot总数,导致超出了并行能力上限,那么心有余力不足,程序就只好等待资源管理器分配更多的资源了。
算子链(Operator Chain)
一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
一对一直通(One-to-one,forwarding)
数据流维护着分区以及元素的顺序。source算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着 map 算子的子任务,看到的元素个数和顺序跟 source 算子的子任务产生的完全一样,保证着“一对一”的关系。
重分区(Redistributing)
数据流的分区会发生改变。每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。例如,keyBy()是分组操作,本质上基于键(key)的哈希值(hashCode)进行了重分区;而当并行度改变时,比如从并行度为 2 的 window 算子,要传递到并行度为 1 的 Sink 算子,这时的数据传输方式是再平衡(rebalance),会把数据均匀地向下游子任务分发出去。
合并算子链
在 Flink 中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分。这样的技术被称为合并算子链。
Flink中的状态
算子状态(Operator State)
Operator State可以用在所有算子上,每个算子子任务或者说每个算子实例共享一个状态,流入这个算子子任务的数据可以访问和更新这个状态。
算子状态的实际应用场景不如 Keyed State 多,一般用在 Source 或 Sink 等与外部系统连接
的算子上,或者完全没有 key 定义的场景。比如 Flink 的 Kafka 连接器中,就用到了算子状态。 在我们给 Source 算子设置并行度后,Kafka 消费者的每一个并行实例,都会为对应的主题( topic)维护一个偏移量, 作为算子状态保存起来。
对于 Operator State 来说因为不存在 key,所有数据发往哪个分区是不可预测的;也就是说,当发生故障重启之后,我们不能保证某个数据跟之前一样,进入到同一个并行子任务、访问同一个状态。所以 Flink 无法直接判断该怎样保存和恢复状态,而是提供了 接口,让我们根据业务需求自行设计状态的快照保存(snapshot)和恢复(restore)逻辑。
支持的结构类型
广播状态(BroadcastState):有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。
列表状态(ListState)
联合列表状态(UnionListState)
按键分区状态(Keyed State)
状态是根据输入流中定义的键(key)来维护和访问的,相当于用key来进行物理隔离,所以只能定义在按键分区流(KeyedStream)中,也就 keyBy 之后才可以使用。
不同 key 对应的 Keyed State可以进一步组成所谓的键组(key groups),每一组都对应着一个并行子任务。键组是 Flink 重新分配 Keyed State 的单元,键组的数量就等于定义的最大并行度。当算子并行度发生改变时,Keyed State 就会按照当前的并行度重新平均分配,保证运行时各个子任务的负载相同。
支持的结构类型
- 比较常用的:ValueState、ListState、MapState
- 不太常用的:ReducingState 和 AggregationState