当前位置: 首页 > news >正文

torch.squeeze() dim=1 dim=-1 dim=2

对数据的维度进行压缩

使用方式:torch.squeeze(input, dim=None, out=None)

将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

import torch
x = torch.rand(2, 1, 1, 3, 1, 4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 4])

当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

注意:

如果dim指定的维度的值为1

第一种情况

import torch
x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])
import torch
x = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 1, 4])

第二种情况

x = torch.rand(1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])

第三种情况

x = torch.rand(1,1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# # torch.Size([1, 1, 2, 1, 1, 3, 1, 4])
# # =======out_3=========
# # torch.Size([1, 2, 1, 1, 3, 1, 4])

如果dim指定的维度的值为-1

第一种情况 如果dim指定的维度的值为-1

import torchx = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=-1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 1, 3, 1, 4])

第二种情况 如果dim指定的维度的值为-1

x = torch.rand(2,1,1,3,1,4,1)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=-1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
# =======out_2=========
# torch.Size([2, 1, 1, 3, 1, 4])

第三种情况 如果dim指定的维度的值为-1

x = torch.rand(2,1,1,3,1,4,1,1)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=-1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1, 1])
# =======out_3=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])

如果dim指定的维度的值为2

import torchx = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=2)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=2)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(1,2,1,1,3,1,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=2)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 1, 4])
# =======out_3=========
# torch.Size([1, 2, 1, 3, 1, 1, 4])

http://www.lryc.cn/news/371328.html

相关文章:

  • 智慧环保一体化平台简介
  • idea在空工程中添加新模块并测试的步骤
  • HCIE-QOS基本原理
  • pycharm基本使用(常用快捷键)
  • 机器学习--回归模型和分类模型常用损失函数总结(详细)
  • 企业选择数字工厂管理系统供应商的标准是什么
  • 京准电钟|基于纳秒级的GPS北斗卫星授时服务器
  • Flutter知识点
  • 2024-06-12 问AI: 在大语言模型中,什么是Jailbreak漏洞?
  • Vue22-v-model收集表单数据
  • 【深度学习】深入解码:提升NLP生成文本的策略与参数详解
  • Petalinux由于网络原因产生的编译错误(2)--Fetcher failure:Unable to find file
  • 随手记:商品信息过多,展开收起功能
  • uniapp上传头像并裁剪图片
  • 9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程
  • 英智教育智能体,AI Agent赋能教育培训行业数字化升级
  • 什么是电脑监控软件?六款知名又实用的电脑监控软件
  • 小程序名片怎么生成?AI名片生成器源码系统 为企业店铺创建自己的数字名片
  • 浅谈PMP:项目管理的专业化认证
  • 获取闲鱼商品详情api
  • java1.8运行arthas-boot.jar运行报错解决
  • 每日一练 - IGMP协议与查询器选举机制
  • 深入浅出:面向对象软件设计原则(OOD)
  • 缓存与数据一致性问题
  • 2024年上海高考作文题目(ChatGPT版)
  • .net 调用海康SDK以及常见的坑解释
  • KVM+GFS高可用
  • C++迈向精通:当我尝试修改虚函数表
  • IDEA 高效插件工具
  • SQL入门大全