当前位置: 首页 > news >正文

diffusers 使用脚本导入自定义数据集

在训练扩散模型时,如果附加额外的条件图片数据,则需要我们准备相应的数据集。此时我们可以使用官网提供的脚本模板来控制导入我们需要的数据。

您可以参考官方的教程来实现具体的功能需求,为了更加简洁,我将简单描述一下整个流程的关键点:

  1. 首先按照您的需求准备好所有的数据集文件,统一放到一个dataset_name(可以自己定义)目录下,可以划分多个子文件夹,但是需要在您的matadata.json中描述好相对路径位置;这一步和平时准备数据集的过程一样,只是多了额外的条件图片数据。
  2. 在dataset_name下创建同名的dataset_name.py脚本文件,该脚本文件的类名要和脚本名一致,并复制下文的模板内容,然后修改特定位置:
import pandas as pd
from huggingface_hub import hf_hub_url
import datasets
import os_VERSION = datasets.Version("0.0.2")_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "TODO"
_CITATION = "TODO"_FEATURES = datasets.Features({"image": datasets.Image(),"conditioning_image": datasets.Image(),"text": datasets.Value("string"),},
)METADATA_URL = hf_hub_url("fusing/fill50k",filename="train.jsonl",repo_type="dataset",
)IMAGES_URL = hf_hub_url("fusing/fill50k",filename="images.zip",repo_type="dataset",
)CONDITIONING_IMAGES_URL = hf_hub_url("fusing/fill50k",filename="conditioning_images.zip",repo_type="dataset",
)_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)class Fill50k(datasets.GeneratorBasedBuilder):BUILDER_CONFIGS = [_DEFAULT_CONFIG]DEFAULT_CONFIG_NAME = "default"def _info(self):return datasets.DatasetInfo(description=_DESCRIPTION,features=_FEATURES,supervised_keys=None,homepage=_HOMEPAGE,license=_LICENSE,citation=_CITATION,)def _split_generators(self, dl_manager):metadata_path = dl_manager.download(METADATA_URL)images_dir = dl_manager.download_and_extract(IMAGES_URL)conditioning_images_dir = dl_manager.download_and_extract(CONDITIONING_IMAGES_URL)return [datasets.SplitGenerator(name=datasets.Split.TRAIN,# These kwargs will be passed to _generate_examplesgen_kwargs={"metadata_path": metadata_path,"images_dir": images_dir,"conditioning_images_dir": conditioning_images_dir,},),]def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):metadata = pd.read_json(metadata_path, lines=True)for _, row in metadata.iterrows():text = row["text"]image_path = row["image"]image_path = os.path.join(images_dir, image_path)image = open(image_path, "rb").read()conditioning_image_path = row["conditioning_image"]conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"])conditioning_image = open(conditioning_image_path, "rb").read()yield row["image"], {"text": text,"image": {"path": image_path,"bytes": image,},"conditioning_image": {"path": conditioning_image_path,"bytes": conditioning_image,},}
  1. 修改时主要关注两个函数,和一些命名:
  • 第一个是_split_generators(),把所有download相关的内容注释掉,这里会让你去下载官方的数据集,我们的需求是准备自己的数据集,所以为了方便直接把这个函数中的关键文件路径改为自己的绝对路径,比如metadata_path,就是你的metadata.json的路径,images_dir和conditioning_images_dir是你的图片的上级目录的绝对路径。这里我曾经测试过使用相对路径,发现是行不通的,主要的问题是diffuers在项目运行时会把当前的脚本先拷贝到c盘,然后再加载入内存,所以相对路径会不起作用。
  • 第二个是_generate_examples(),我们需要按照上个函数给出的路径依次加载图片文件和文本,这里主要是把所有的数据集内容修改为你需要的信息。这里有个关键点是,你必须保证metadata.json中第一列image的内容是不重复的,因为该列会作为索引的key值出现,否则会报错。
  • 最后是把脚本中所有与数据集信息相关的名称校对为你需要的。

在训练过程中,指定好数据集dataset_name的位置,diffusers会自动调用dataset_name.py来读取数据集中的数据。

http://www.lryc.cn/news/369784.html

相关文章:

  • 【Android面试八股文】请讲一讲synchronized和ReentrantLock的区别
  • springmvc 全局异常处理器配置的三种方式深入底层源码分析原理
  • MySQL 8.0 安装、配置、启动、登录、连接、卸载教程
  • Pythone 程序打包成 exe
  • “卫星-无人机-地面”遥感数据快速使用及地物含量计算
  • 设计模式学习(二)工厂模式——简单工厂模式
  • 贷款业务——LPR、APR、IRR
  • Simscape Multibody与RigidBodyTree:机器人建模
  • 数据结构刷题-链表
  • Java应届第一年规划
  • js之简单轮播图
  • GitLab教程(二):快手上手Git
  • 前端渲染大量数据思路【虚拟列表】【异步机制】
  • Ubuntu24.04记录网易邮箱大师的安装
  • PDF编辑与转换的终极工具智能PDF处理Acrobat Pro DC
  • Django UpdateView视图
  • 【CS.SE】2024年,你应该选择计算机专业吗?详细分析与未来展望
  • 后端开发面经系列 -- 华为OD -- C++面经(全)
  • 3072. 将元素分配到两个数组中 II Rust 线段树 + 离散化
  • day35|1005.K次取反后最大化的数组和 134. 加油站135. 分发糖果
  • HWA和BSS区别
  • 【Excel】Excel中将日期格式转换为文本格式,并按日期显示。
  • 物联网学习小记
  • 代码随想录-Day29
  • C/C++ 进阶(6)红黑树
  • 【Vue】构建vuex-cart模块
  • 如何成为嵌入式系统工程师?
  • 【AI大模型】Transformers大模型库(七):单机多卡推理之device_map
  • 驱动代码编写(一)
  • Prompt-to-Prompt Image Editing with Cross Attention Control