当前位置: 首页 > news >正文

二叉树从入门到AC(3)完全二叉树与堆

完全二叉树与堆

    • 前言
    • 优先队列:堆
    • 向下调整维护堆
    • 向上调整维护堆
    • 堆的作用

前言

本文算是补充之前的系列,在前文中,讲了二叉树的基本结构与应用
二叉树从入门到AC(1)构建和前中后序遍历
二叉树从入门到AC(2)深度与层次遍历
二叉树的特殊形态
二叉树有两种常用的特殊形态:满二叉树和完全二叉树。如果一颗二叉树,其内部每个结点都有左右儿子,我们称之为满二叉树,这很好理解,如图所示:
在这里插入图片描述

我们在满二叉树中的最后一层,从右往左连续拔去至少零个结点,便是完全二叉树。也就是说,满二叉树是一种特殊的完全二叉树
在这里插入图片描述
以上都为完全二叉树
那么如何判断一棵树是不是完全二叉树呢?我们可以运用层次遍历的结构(前文有代码),首先将储存一颗非空树,在队列中遵循:
1.如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树
2.如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空,且则该节点之后的队列中的结点都为叶子节点,该树才是完全二叉树
3.以上两个一直都没触发,说明是满二叉树

优先队列:堆

堆,是一种特殊的完全二叉树,每个结点储存一个值,其中,若所有父结点都小于其子结点,称为最小堆,反之则是最大堆。如图:
在这里插入图片描述
二叉堆是一种基础数据结构,C++ 的STL中的优先队列就是使用二叉堆。另外,堆排序也是一种二叉堆算法。
堆的作用主要面向一个问题:如何高效的在一组数据中任意插入删除任何值的情况下,始终找到最小值/最大值。
这种数据结构也被称为优先队列。

向下调整维护堆

以上图的最小堆为例,在数组中按层次遍历储存为3,5,7,9,8,11
要求:不限次数的删除最小值并插入进新的值,保持堆的属性(最小值在堆顶)
这时候我们删除堆顶的最小值3,并且添加任意一个数如10到堆顶,只要能维护这个堆的属性,我们就可以得到新的最小值。
于是设计算法,我们从堆顶开始反复执行:把当前结点与左右儿子比对,并与最小的那个结点交换值,直到无法交换(要么是左右儿子都更大,要么是到叶子结点了)
如图所示:
在这里插入图片描述
于是我们维护住了一个最小堆,最大堆也是同理。那么在代码层就好写多了,我们可以根据数组下标发现,设当前结点下标为i,我们只需要每次与2i和2i+1相比并判断是否Swap就好
在这里插入图片描述

void Sswap(int a,int b)
{int c=0;c=arr[b];arr[b]=arr[a];arr[a]=c;
}
void siftdown(int i)//向下调整,用于寻找最值
{int t=0,flag=0;while(i*2<=n&&flag==0){if(arr[i]>arr[i*2])t=i*2;elset=i;if(t*2+1<=n){if(arr[t]>arr[i*2+1])t=i*2+1;}if(t!=i){Sswap(t,i);//交换两结点的值i=t;}elseflag=1;}
}

在主函数中,我们将数组调整为全局变量,并且i始终设为0,例如

int arr[6]={10,5,7,9,8,11};
int n=5;
int main()
{siftdown(0);for(int i=0;i<=n;i++){printf("%d ",arr[i]);}return 0;
}

执行结果:
在这里插入图片描述

向上调整维护堆

如果我们需要不断向堆中添加数值而不删除数值怎么办?那么我们可以从下面的叶子结点开始添加,并逐一往上比对,来维护堆。

void siftup(int i)
{int flag=0;if(i==0)return;while(i!=0&&flag==0){if(arr[i]<arr[i/2])Sswap(i,i/2);elseflag=1;i=i/2;}
}

我们将:arr[6]={3,5,7,9,8,1};
与i=5代入,
在这里插入图片描述

这便是堆的维护操作。

堆的作用

当我们输入一个数组,并求其最值时,我们一般会开max或min比对每个数并保留最值,这是时间复杂度最低的做法,为O(N)。但是当我们删除最小值并添加进一个新值之后,就相当于需要彻底进行一次重新排序,复杂度也来到了O(N^2),而同样的目的,由于堆的特性,维护起来只需要logN的时间。
那么我们如何用完全无序的数列建立一个堆呢?

void creat()
{int i=0;for(i=n/2;i>=0;i--){siftdown(i);}
}

即可。
在创建了堆之后,我们还有著名的排序方法,堆排序,网上到处都有模板在这里不赘述。另外,堆也是一种重要的优化思路出现在别的算法中,主旨都在于用更短的时间来在插入、删除元素的情况下捕捉最值(或者第n大的值也可以)。

http://www.lryc.cn/news/369658.html

相关文章:

  • AI写作:如何让创作过程更流畅?
  • 2024中国海洋装备展暨航海装备大会(福州海峡国际会展中心)
  • CyberDAO:引领Web3时代的DAO社区文化
  • 测试面试点
  • Nginx配置详细解释:(4)高级配置
  • OceanBase 4.3 特性解析:列存技术
  • ARM32开发--PWM与通用定时器
  • debugger(七):栈帧(backtrace)
  • kafka-重试和死信主题(SpringBoot整合Kafka)
  • electron-Vue: Module parse failed: Unexpected character ‘ ‘
  • 贪心算法-数组跳跃游戏(mid)
  • C++经典150题
  • 超详解——Python 序列详解——基础篇
  • DVWA-DC-6
  • ubuntu早期版本以及18.04后的版本,通过rc.local配置开机自启
  • 【环境搭建】1.阿里云ECS服务器 安装jdk8
  • idea插件开发之定义侧边栏
  • HarmonyOS未来五年的市场展望
  • R语言:什么是向量化操作(Vectorization)?
  • Python 机器学习 基础 之 【实战案例】中药数据分析项目实战
  • python中报错“ModuleNotFoundError: No module named ‘docx2txt‘”
  • json.dumps参数
  • 未来已来,划时代革命性产品——全息数字人管家系统,全网首发
  • psql导入数据报错排查
  • 项目:双人五子棋对战-对战模块(6)
  • LeakSearch:针对网络公开凭证的安全扫描与检测工具
  • ArcoDesgin a-model中自定义样式model-class无效
  • 持续总结中!2024年面试必问 20 道分布式、微服务面试题(十)
  • 北航第四次数据结构与程序设计编程题复习
  • golang调用外部程序包os/exec中的 Command和CommandContext 函数创建的Cmd对象的区别