当前位置: 首页 > news >正文

AMEYA360代理品牌:ROHM开发出世界超小CMOS运算放大器,适用于智能手机和小型物联网设备等应用

全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款超小型封装的CMOS运算放大器“TLR377GYZ”,该产品非常适合在智能手机和小型物联网设备等应用中放大温度、压力、流量等的传感器检测信号。
  智能手机和物联网终端越来越小型化,这就要求搭载的元器件也要越来越小。另一方面,要想提高应用产品的控制能力,就需要高精度地放大来自传感器的微小信号,因此需要在保持高精度的前提下实现小型化。在这样的背景下,ROHM通过进一步改进多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,开发出同时满足“小型”和“高精度”两种需求的运算放大器。
  新产品通过进一步改进ROHM多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,成功地实现了通常认为运算放大器难以同时实现的小型化和高精度。
  造成运算放大器误差的因素通常包括“输入失调电压”*1和“噪声”。两者都是与放大精度相关的项目,都可以通过扩大内置晶体管尺寸得到抑制,然而这又涉及到与小型化之间的权衡关系。通过嵌入利用ROHM自有电路设计技术开发出来的失调电压校正电路,新产品在保持晶体管尺寸不变的前提下实现了最高仅1mV的低输入失调电压。另外,新产品不仅利用ROHM自有的工艺技术改善了常见的闪烁噪声*2,还通过从元件层面重新调整电阻分量,实现了超低噪声,等效输入噪声电压密度*3仅为12nV/√Hz。此外,新产品采用了WLCSP(Wafer Level Chip Size Package)封装,该封装利用ROHM自有的封装技术将引脚间距减小到了0.3mm。与以往产品相比,尺寸减小了约69%;与以往的小型产品相比,尺寸减小了约46%。
  新产品已于2024年5月开始暂以月产10万个的规模投入量产(样品价格220日元/个,不含税)。为了便于客户进行替换评估和初期评估,ROHM还提供已安装了IC可支持SSOP6封装的转换板。新产品和转换板均已开始网售,通过Ameya360电商平台均可购买。另外,还可以从ROHM官网上获取验证用的仿真模型——高精度SPICE模型“ROHM Real Model”*4。
  未来,ROHM将继续致力于提高运算放大器的性能,追求更小型、更高精度、以及融入ROHM自有超低静态电流技术的更低功耗,通过更先进的应用产品控制技术,为解决社会问题持续贡献力量。
  <产品主要特性>
  新产品精度高且尺寸超小,并内置移动设备所需的关断功能,可减少待机期间的消耗电流。
  <应用示例>
    ・智能手机、配有检测放大器的小型物联网设备等
  <电商销售信息>
       开始销售时间:2024年5月起
  电商平台:Ameya360
  新产品在其他电商平台也将逐步发售。
  ・产品型号:TLR377GYZ
  ・已安装IC的转换板:TLR377GYZ-EVK-001
  <关于高精度仿真模型“ROHM Real Model”>
  在新产品验证用的仿真模型中,利用ROHM自有的建模技术,忠实地再现了实际IC的电气特性和温度特性,成功地使仿真值与IC实物的值完全一致。ROHM提供这种高精度SPICE模型“ROHM Real Model”,通过可靠的验证,可有效防止实际试制后的返工等情况发生,有助于提高应用产品的开发效率。
  这种SPICE模型可通过ROHM官网获取。
  <术语解说>
  *1) 输入失调电压
  运算放大器输入引脚间产生的误差电压称为“输入失调电压”。
  *2) 闪烁噪声
  半导体等电子元器件中一定会产生的一种噪声。由于功率与频率成反比,因此频率越低,闪烁噪声越大。也被称为“1/f 噪声”或“粉红噪声”。除此之外,噪声还包括热噪声(白噪声)等不同类型的噪声。
  *3) 等效输入噪声电压密度
  使输入引脚间短路、并将输出端出现的噪声电压密度折算到输入端后得到的值。由于放大器存在增益(放大系数),因此可以通过输出噪声电压密度除以增益来合理评估放大器本身的噪声特性。
  *4) ROHM Real Model
  使用ROHM自有的建模技术,成功地使仿真值与实际IC的值完全一致的高精度仿真模型。

http://www.lryc.cn/news/369475.html

相关文章:

  • 第1章Hello world 4/5:对比Rust/Java/C++创建和运行Hello world全过程:运行第一个程序
  • golang优雅代码【lock实现】
  • Dijkstra算法(迪杰斯特拉算法)
  • 用函数指针求a和b中的大者
  • 鸿蒙轻内核M核源码分析系列六 任务及任务调度(2)任务模块
  • 解决找不到MSVCR120.dll,无法执行代码
  • Linux iptables详解
  • Mac电脑arm64芯片Cocoapods 的 ffi 兼容问题
  • 如何提高逻辑性?(小妙招)
  • 2024050501-重学 Java 设计模式《实战命令模式》
  • 0104__Linux 中 nm 命令简介
  • Linux网络服务
  • Vue18-列表渲染
  • 【三维重建】增量SFM系统
  • PyTorch 维度变换-Tensor基本操作
  • spring 事务失效的几种场景
  • 45岁程序员独白:中年打工人出路在哪里?
  • 深度探讨:为何训练精度不高却在测试中表现优异?
  • 动态内存管理<C语言>
  • 第一百零二节 Java面向对象设计 - Java静态内部类
  • 给自己Linux搞个『回收站』,防止文件误删除
  • Springboot接收参数的21种方式
  • 打造出色开发者体验的十大原则
  • Vue3_对接腾讯云COS_大文件分片上传和下载
  • python免杀--base64加密(GG)
  • Python版与Java版城市天气信息爬取对比分析
  • CSS真题合集(二)
  • 长期出汗困扰你?可能是肾合出了问题
  • Jmeter函数二次开发说明
  • 重新学习STM32(1)GPIO