当前位置: 首页 > news >正文

数学建模笔记

数学建模

定义角度

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。(MBA智库)

数学建模课看作是把问题定义转化为数学模型的过程。
简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。

问题角度

1.请为我预测一下明天的气温?(环境类)
2.请帮我分析一下理财产品的最优组合(财经类)
3.请帮我评价一下这项政策的优缺点(实证类)
4.请帮我对北京市的土地利用情况进行合理的划分(城市规划类)
5.请帮我预测一下小麦的产量(农业类)
6.请帮我找出标枪运动员最佳的投掷点(力学类)
等等……
几乎所有的行业都要用到数学建模!很多事情无法直接凭借主观经验获取, 需要用科学的方法进行解算, 此过程便是数学建模。

学习方法论(仅供参考)

分步骤理解

第一步:提出问题.

大家可能会想,题目不是已经给出问题了吗? 是的,但是这里的提出问题是指:用数学语言去表达。首先,题目一定要通读若干遍,“看不懂,读题目;看不懂,读题目”,如此反复循环的同时查阅相关资料。这通常需要大量的工作,而且要根据题目的特点做一些假设。 看的差不多了,就开始用数学形式提出问题,当然,在这之前,先引用或者定义一些专业术语。 接下来进行符号说明,统一符号(这点很重要,三个人之间便于沟通,论文便于展现),并列出整个问题涉及的变量,包括恰当的单位,列出我们已知或者作出的假设(用数学语言描述,比如等式,不等式)。 做完这些准备工作后,就开始正式提出问题啦。用明确的数学语言写出这个问题的表达式,加上之前的准备工作,就构成了完整的问题。 这部分的内容反映到论文结构上,相当于前言,问题提出,模型建立部分。注意,刚开始建立的模型很挫没关系,我们随时可以返回来进行修改的。

第二步:选择建模方法.

在有了用数学语言表述的问题后,我们需要选择一个或者多个数学方法来获得解。 许多问题,尤其是运筹优化微分方程的题目,一般都可以表述成一个已有有效的标准求解形式。这里可以通过查阅相关领域的文献,获得具体的方法。为什么不是查阅教材呢?基本上教材讲的都是基础的,针对特定问题的,教材上一般找不到现成的方法,但是教材依然是很重要的基础工具,有时候想不出思路,教材(比如姜启源那本)翻来翻去,会产生灵感,可以用什么模型。

第三步:推导模型的公式.

我们要把第二步的方法实现出来,也就是论文的模型建立部分。我们要对建立的问题进行变形,推导,转化为可以运行标准方法解答的形式。这部分通常是借鉴参考文献的过程,做一些修改,以适应本题的情况。

http://www.lryc.cn/news/368686.html

相关文章:

  • shell编程(三)—— 控制语句
  • 反射学习记
  • 使用Python操作Redis
  • Vue-CountUp-V2 数字滚动动画库
  • C语言详解(文件操作)1
  • Python Requests库详解
  • Kafka 详解:全面解析分布式流处理平台
  • RabbitMQ系列-rabbitmq无法重新加入集群,启动失败的问题
  • postgresql之翻页优化
  • 小白学Linux | 日志排查
  • Spring6
  • 数字孪生概念、数字孪生技术架构、数字孪生应用场景,深度长文学习
  • 云服务对比:阿里云国际站和阿里云国内站有什么区别
  • 如何在npm上发布自己的包
  • SQL Chat:从SQL到SPEAKL的数据库操作新纪元
  • jmeter性能优化之mysql配置
  • VueRouter3学习笔记
  • 「前端+鸿蒙」鸿蒙应用开发-TS函数
  • python后端结合uniapp与uview组件tabs,实现自定义导航按钮与小标签颜色控制
  • mingw如何制作动态库附python调用
  • Vue学习|Vue快速入门、常用指令、生命周期、Ajax、Axios
  • Python基础教程(八):迭代器与生成器编程
  • Oracle10.2.0.1冷备迁移之_数据文件拷贝方式
  • 智能合约中外部调用漏洞
  • 转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品
  • 【C++11】常见的c++11新特性(一)
  • 牛客周赛 Round 46 题解 C++
  • 9.3 Go 接口的多态性
  • Java通过字符串字段匹配形成树形结构
  • 数字孪生智慧水利:精准管理与智能决策的新时代