Leetcode 回溯详解
回溯法
回溯法有“通用解题法”之称,用它可以系统地搜索问题的所有解。回溯法是一个既带有系统性又带有跳跃性的搜索算法。
在包含问题的所有解的解空间树中,按照深度优先搜索(DFS))的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
解题步骤
- 针对所给问题,定义问题的解空间
- 确定易于搜索的解空间结构
- 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
子集树与排列树
下面的两棵解空间树是回溯法解题时常遇到的两类典型的解空间树,子集树与排列树
子集树
当所给问题是从n个元素的集合S中找出S满足某种性质的子集时,相应的解空间树称为子集树。例如从n个物品的0-1背包问题
所相应的解空间树是一棵子集树,这类子集树通常有2n{2^n}2n个叶结点,其结点总个数为2n+1−1{2 ^{n+1}- 1}2n+1−1。遍历子集树的算法需O(2n{2^n}2n)计算时间
用回溯法搜索子集树的一般算法可描述为:
/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数* bount(t) 当前结点的限界函数* @param t t为当前解空间的层数*/
void backtrack(int t){if(t >= n)output(x);elsefor (int i = 0; i <= 1; i++) {x[t] = i;if(constraint(t) && bount(t))backtrack(t+1);}
}
排列树
当所给问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。例如旅行售货员问题
的解空间树是一棵排列树,这类排列树通常有n!{n!}n!个叶结点。遍历子集树的算法需O(n!{n!}n!)计算时间
用回溯法搜索排列树的一般算法可描述为:
/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数* bount(t) 当前结点的限界函数* @param t t为当前解空间的层数*/
void backtrack(int t){if(t >= n)output(x);elsefor (int i = t; i <= n; i++) {swap(x[t], x[i]);if(constraint(t) && bount(t))backtrack(t+1);swap(x[t], x[i]);}
}
Leetcode真题
电话号码的字母组合
解题思路:
经典排列树,按节点遍历
private String[] voc = new String[]{"","*", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
List<String> res = new ArrayList();
public List<String> letterCombinations(String digits) {if (digits == null || digits.length() == 0) {return res;}backtrack(digits, 0, new StringBuffer());return res;
}public void backtrack(String digits, int index, StringBuffer s) {if (index == digits.length()) {res.add(s.toString());return;}int i = digits.charAt(index) - '0';for (char c : voc[i].toCharArray()) {s.append(c);backtrack(digits, index + 1, s);s.deleteCharAt(s.length() - 1);}
}
括号生成
解题思路:
排列树,按节点遍历
- 回溯结束条件:左括号数 = 右括号数 = 总数
- 左括号数<总数, 字符串加入左括号
- 右括号数<总数 且 左括号数>右括号数,字符串加入右括号
List<String> res = new ArrayList<>();
public List<String> generateParenthesis(int n) {backtrack(n, 0, 0, "");return res;
}void backtrack(int n, int l, int r, String str) {if (l == n && r == n) {res.add(str);}if (l < n) {backtrack(n, l + 1, r, str + "(");}if (r < n && l > r) {backtrack(n, l, r + 1, str + ")");}
}
N皇后
解题思路:
子集树,按节点遍历
- 回溯结束条件:所有层数放置完毕
- 每列循环遍历,当满足非冲突条件时(列,主对角线,副对角线不冲突)
- 放置该行的皇后
- 执行下一级回溯
两点位于同一对角线时,行列值相加/相减的值相等
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {if (n <= 0) {return res;}backtrack(0, n, new int[n]);return res;
}/*** output(x) 记录或输出得到的可行解x* constraint(t) 当前结点的约束函数** @param t t为当前解空间的层数* @param n 总层数* @param queens 结果集,下标为行号,值为列号*/
void backtrack(int t, int n, int[] queens) {if (t >= n) {output(res, n, queens);return;} else {for (int j = 0; j < n; j++) {if (constraint(t, j, n, queens)) {queens[t] = j;backtrack(t + 1, n, queens);}}}
}/*** 检查是否存在冲突(列,主对角线,副对角线)* 两点位于同一对角线时,行列值相加/相减的值相等*/
boolean constraint(int t, int j, int n, int[] queens) {for (int i = 0; i < t; i++) {if (queens[i] == j || i - queens[i] == t - j || i + queens[i] == t + j) {return false;}}return true;
}void output(List<List<String>> res, int n, int[] queens) {List<String> list = new ArrayList<>();for (int i = 0; i < n; i++) {char[] chars = new char[n];Arrays.fill(chars, '.');chars[queens[i]] = 'Q';list.add(new String(chars));}res.add(list);
}
参考资料:
- 回溯法的解题步骤与例子解析
- leetcode
- 深度优先搜索