当前位置: 首页 > news >正文

[Algorithm][动态规划][两个数组的DP][正则表达式匹配][交错字符串][两个字符串的最小ASCII删除和][最长重复子数组]详细讲解

目录

  • 1.正则表达式匹配
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.交错字符串
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.两个字符串的最小ASCII删除和
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.最长重复子数组
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.正则表达式匹配

1.题目链接

  • 正则表达式匹配

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]p[0, j]区间内的子串能否匹配s[0, i]区间内的子串
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • 结论
        请添加图片描述

      • 推导过程
        请添加图片描述

      • 本题若直接按照如下的状态转移方程去写,时间复杂度会到 O ( N 3 ) O(N^3) O(N3)

      • 所以需要想办法优化

    • 优化

      • 方法一:数学推导
        请添加图片描述

      • 方法二:根据状态表示以及实际情况,优化状态转移方程 -> 抽象,难理解:(

        • 实际相当于保留了*,把状态传递给前面
          请添加图片描述
    • 初始化:

      • 多开一行及一列虚拟结点
        请添加图片描述
    • 确定填表顺序:从上往下,从左往右

    • 确定返回值:dp[n][m]


3.代码实现

bool isMatch(string s, string p) 
{int n = s.size(), m = p.size();s = " " + s, p = " " + p;vector<vector<bool>> dp(n + 1, vector<bool>(m + 1));// Initdp[0][0] = true;for(int i = 2; i <= m; i += 2){if(p[i] == '*'){dp[0][i] = true;}else{break;}}// DPfor(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){if(p[j] == '*'){dp[i][j] = dp[i][j - 2] || (p[j - 1] == '.' || p[j - 1] == s[i]) && dp[i - 1][j];}else{dp[i][j] = (p[j] == s[i] || p[j] == '.') && dp[i - 1][j - 1];}}}return dp[n][m];
}

2.交错字符串

1.题目链接

  • 交错字符串

2.算法原理详解

  • 预处理s1 = " " + s1, s2 = " " + s2, s3 = " " + s3

    • 目的:此时可以很简便的用s1s2的下标就计算到s3的的下标
      请添加图片描述
  • 思路

    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]s1[1, i]区间内的字符串以及s2[1, j]区间内的字符串,能否拼接凑成s3[1, i + j]区间内的字符串
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论
      请添加图片描述

    • 初始化:

      • 多开一行及一列虚拟结点
        请添加图片描述
    • 确定填表顺序:从上往下,从左往右

    • 确定返回值:dp[n][m]


3.代码实现

bool isInterleave(string s1, string s2, string s3) 
{int n = s1.size(), m = s2.size();if(n + m != s3.size()) return false;s1 = " " + s1, s2 = " " + s2, s3 = " " + s3;vector<vector<bool>> dp(n + 1, vector<bool>(m + 1));// Initdp[0][0] = true;for(int i = 1; i <= m; i++) // 第一行{if(s2[i] == s3[i]){dp[0][i] = true;}else{break;}}for(int i = 1; i <= n; i++) // 第一列{if(s1[i] == s3[i]){dp[i][0] = true;}else{break;}}// DPfor(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){dp[i][j] = (s1[i] == s3[i + j] && dp[i - 1][j])|| (s2[j] == s3[i + j] && dp[i][j - 1]);}}return dp[n][m];
}

3.两个字符串的最小ASCII删除和

1.题目链接

  • 两个字符串的最小ASCII删除和

2.算法原理详解

  • 问题转化:删除后,公共子序列中,ASCII和最大的 —> 正难则反
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]s1[0, i]区间以及s2[0, j]区间内的所有的子序列里,公共子序列ASCII最大和
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论
      请添加图片描述

    • 初始化:vector<vector<int>> dp(n + 1, vector<int>(m + 1))

    • 确定填表顺序:从上往下,从左往右

    • 确定返回值:

      • 统计2个字符串的ASCII和sum
      • sum - dp[n][m] * 2

3.代码实现

int minimumDeleteSum(string s1, string s2) 
{int n = s1.size(), m = s2.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1));for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);if(s1[i - 1] == s2[j - 1]){dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + s1[i - 1]);}}}int ret = 0;for(auto& ch : s1){ret += ch;}for(auto& ch : s2){ret += ch;}return ret - dp[n][m] * 2;
}

4.最长重复子数组

1.题目链接

  • 最长重复子数组

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]:选取[0, i]一段区间内的所有子数组 ×
        • 因为此时无法知道最长子数组在哪儿,可能在中间,此时无法正确表示状态
      • dp[i][j]nums1[i]中以i位置元素为结尾的所有的子数组以及nums2中以j位置元素为结尾的所有的子数组中,最长重复子数组的长度
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论
      请添加图片描述

    • 初始化:vector<vector<int>> dp(n + 1, vector<int>(m + 1))

    • 确定填表顺序:从上往下

    • 确定返回值:dp表里面的最大值


3.代码实现

int findLength(vector<int>& nums1, vector<int>& nums2) 
{int n = nums1.size(), m = nums2.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1));int ret = 0;for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){if(nums1[i - 1] == nums2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;ret = max(ret, dp[i][j]);}}}return ret;
}
http://www.lryc.cn/news/365567.html

相关文章:

  • Ffmpeg安装和简单使用
  • 29、matlab算数运算汇总2:加、减、乘、除、幂、四舍五入
  • <Rust><iced>基于rust使用iced库构建GUI实例:动态改变主题色
  • k8s——安全机制
  • Linux驱动应用编程(三)UART串口
  • 【设计模式深度剖析】【4】【行为型】【策略模式】
  • opencv dnn模块 示例(26) 目标检测 object_detection 之 yolov10
  • 【python进阶】python图形化编程之美--tkinter模块初探
  • discuz点微同城源码34.7+全套插件+小程序前端
  • ActiveMQ 介绍、下载、安装和控制台
  • MacOS M系列芯片一键配置多个不同版本的JDK
  • 源码文章上传无忧,论坛小程序支持
  • Docker面试整理-如何优化Docker容器的性能?
  • list(二)和_stack_queue
  • 查询SQL02:寻找用户推荐人
  • 2、Tomcat 线程模型详解
  • 对硬盘的设想:纸存、执行存
  • 最新付会进群多群同时变现社群系统V3.5.3版本 详细教程+源码下载
  • python tk实现标签切换页面
  • 引擎:UI
  • Redis常见异常及优化方案
  • YOLOV5 图像分割:利用yolov5进行图像分割
  • 如何在Linux中使用Screen管理后台进程
  • 互联网轻量级框架整合之SpringMVC初始化及各组件工作原理
  • 【Android面试八股文】finally中的代码一定会执行吗?try里有return,finally还执行么?
  • 微服务第一轮
  • Linux 命令 FIO:深入理解磁盘性能测试工具
  • 《精通ChatGPT:从入门到大师的Prompt指南》大纲目录
  • Go_context包
  • Mysql基础进阶速成版