当前位置: 首页 > news >正文

平衡二叉树的应用举例

AVL 是一种自平衡二叉搜索树,其中任何节点的左右子树的高度之差不能超过 1。

AVL树的特点:

1、它遵循二叉搜索树的一般属性。

2、树的每个子树都是平衡的,即左右子树的高度之差最多为1。

3、当插入新节点时,树会自我平衡。因此,插入操作非常耗时。

AVL Tree的应用:

1、大多数内存中集和字典都使用 AVL 树进行存储。

2、数据库应用程序(插入和删除不太常见,但需要频繁的数据查找)也经常使用 AVL 树。

3、除了数据库应用程序之外,它还用于其他需要更好搜索的应用程序。

4、有序关联容器(集合、多集、映射和多映射)的大多数 STL 实现都使用红黑树而不是 AVL树。

#include <stdio.h>
#include <stdlib.h>struct AVLnode
{int key;struct AVLnode *left;struct AVLnode *right;int height;
};
typedef struct AVLnode avlNode;int max(int a, int b) { return (a > b) ? a : b; }avlNode *newNode(int key)
{avlNode *node = (avlNode *)malloc(sizeof(avlNode));if (node == NULL)printf("!! Out of Space !!\n");else{node->key = key;node->left = NULL;node->right = NULL;node->height = 0;}return node;
}int nodeHeight(avlNode *node)
{if (node == NULL)return -1;elsereturn (node->height);
}int heightDiff(avlNode *node)
{if (node == NULL)return 0;elsereturn (nodeHeight(node->left) - nodeHeight(node->right));
}/* 返回左子树中最小值的节点*/
avlNode *minNode(avlNode *node)
{avlNode *temp = node;while (temp->left != NULL) temp = temp->left;return temp;
}void printAVL(avlNode *node, int level)
{int i;if (node != NULL){printAVL(node->right, level + 1);printf("\n\n");for (i = 0; i < level; i++) printf("\t");printf("%d", node->key);printAVL(node->left, level + 1);}
}avlNode *rightRotate(avlNode *z)
{avlNode *y = z->left;avlNode *T3 = y->right;y->right = z;z->left = T3;z->height = (max(nodeHeight(z->left), nodeHeight(z->right)) + 1);y->height = (max(nodeHeight(y->left), nodeHeight(y->right)) + 1);return y;
}avlNode *leftRotate(avlNode *z)
{avlNode *y = z->right;avlNode *T3 = y->left;y->left = z;z->right = T3;z->height = (max(nodeHeight(z->left), nodeHeight(z->right)) + 1);y->height = (max(nodeHeight(y->left), nodeHeight(y->right)) + 1);return y;
}avlNode *LeftRightRotate(avlNode *z)
{z->left = leftRotate(z->left);return (rightRotate(z));
}avlNode *RightLeftRotate(avlNode *z)
{z->right = rightRotate(z->right);return (leftRotate(z));
}avlNode *insert(avlNode *node, int key)
{if (node == NULL)return (newNode(key));/*二叉搜索树插入*/if (key < node->key)node->left =insert(node->left, key); /*递归插入左子树*/else if (key > node->key)node->right =insert(node->right, key); /*递归插入右子树*//*计算节点高度*/node->height = (max(nodeHeight(node->left), nodeHeight(node->right)) + 1);/*检查平衡性*/int balance = heightDiff(node);/*左左*/if (balance > 1 && key < (node->left->key))return rightRotate(node);/*右右*/if (balance < -1 && key > (node->right->key))return leftRotate(node);/*左右*/if (balance > 1 && key > (node->left->key)){node = LeftRightRotate(node);}/*右左*/if (balance < -1 && key < (node->right->key)){node = RightLeftRotate(node);}return node;
}avlNode *delete (avlNode *node, int queryNum)
{if (node == NULL)return node;if (queryNum < node->key)node->left =delete (node->left, queryNum); /*Recursive deletion in L subtree*/else if (queryNum > node->key)node->right =delete (node->right, queryNum); /*Recursive deletion in R subtree*/else{/*单节点或者没有子节点*/if ((node->left == NULL) || (node->right == NULL)){avlNode *temp = node->left ? node->left : node->right;/*没有子节点*/if (temp == NULL){temp = node;node = NULL;}else /*单节点*/*node = *temp;free(temp);}else{/*两个孩子节点*//*获取右子树最小值的节点*/avlNode *temp = minNode(node->right);node->key = temp->key; /*拷贝到根节点*/node->right =delete (node->right,temp->key); /*删除右子树最小值的节点*/}}/*单节点*/if (node == NULL)return node;/*更新高度*/node->height = (max(nodeHeight(node->left), nodeHeight(node->right)) + 1);int balance = heightDiff(node);/*左左*/if ((balance > 1) && (heightDiff(node->left) >= 0))return rightRotate(node);/*左右*/if ((balance > 1) && (heightDiff(node->left) < 0)){node = LeftRightRotate(node);}/*右右*/if ((balance < -1) && (heightDiff(node->right) >= 0))return leftRotate(node);/*右左*/if ((balance < -1) && (heightDiff(node->right) < 0)){node = RightLeftRotate(node);}return node;
}avlNode *findNode(avlNode *node, int queryNum)
{if (node != NULL){if (queryNum < node->key)node = findNode(node->left, queryNum);else if (queryNum > node->key)node = findNode(node->right, queryNum);}return node;
}void printPreOrder(avlNode *node)
{if (node == NULL)return;printf("  %d  ", (node->key));printPreOrder(node->left);printPreOrder(node->right);
}void printInOrder(avlNode *node)
{if (node == NULL)return;printInOrder(node->left);printf("  %d  ", (node->key));printInOrder(node->right);
}void printPostOrder(avlNode *node)
{if (node == NULL)return;printPostOrder(node->left);printPostOrder(node->right);printf("  %d  ", (node->key));
}int main()
{int choice;int flag = 1;int insertNum;int queryNum;avlNode *root = NULL;avlNode *tempNode;while (flag == 1){printf("\n\nEnter the Step to Run : \n");printf("\t1: Insert a node into AVL tree\n");printf("\t2: Delete a node in AVL tree\n");printf("\t3: Search a node into AVL tree\n");printf("\t4: printPreOrder (Ro L R) Tree\n");printf("\t5: printInOrder (L Ro R) Tree\n");printf("\t6: printPostOrder (L R Ro) Tree\n");printf("\t7: printAVL Tree\n");printf("\t0: EXIT\n");scanf("%d", &choice);switch (choice){case 0:{flag = 0;printf("\n\t\tExiting, Thank You !!\n");break;}case 1:{printf("\n\tEnter the Number to insert: ");scanf("%d", &insertNum);tempNode = findNode(root, insertNum);if (tempNode != NULL)printf("\n\t %d Already exists in the tree\n", insertNum);else{printf("\n\tPrinting AVL Tree\n");printAVL(root, 1);printf("\n");root = insert(root, insertNum);printf("\n\tPrinting AVL Tree\n");printAVL(root, 1);printf("\n");}break;}case 2:{printf("\n\tEnter the Number to Delete: ");scanf("%d", &queryNum);tempNode = findNode(root, queryNum);if (tempNode == NULL)printf("\n\t %d Does not exist in the tree\n", queryNum);else{printf("\n\tPrinting AVL Tree\n");printAVL(root, 1);printf("\n");root = delete (root, queryNum);printf("\n\tPrinting AVL Tree\n");printAVL(root, 1);printf("\n");}break;}case 3:{printf("\n\tEnter the Number to Search: ");scanf("%d", &queryNum);tempNode = findNode(root, queryNum);if (tempNode == NULL)printf("\n\t %d : Not Found\n", queryNum);else{printf("\n\t %d : Found at height %d \n", queryNum,tempNode->height);printf("\n\tPrinting AVL Tree\n");printAVL(root, 1);printf("\n");}break;}case 4:{printf("\nPrinting Tree preOrder\n");printPreOrder(root);break;}case 5:{printf("\nPrinting Tree inOrder\n");printInOrder(root);break;}case 6:{printf("\nPrinting Tree PostOrder\n");printPostOrder(root);break;}case 7:{printf("\nPrinting AVL Tree\n");printAVL(root, 1);break;}default:{flag = 0;printf("\n\t\tExiting, Thank You !!\n");break;}}}return 0;
}

http://www.lryc.cn/news/359086.html

相关文章:

  • 一键安装 HaloDB 之 Ansible for Halo
  • el-table的上下筛选功能
  • 【手撕面试题】Vue(高频知识点一)
  • LabVIEW车轮动平衡检测系统
  • 【Python爬虫--scrapy+selenium框架】超详细的Python爬虫scrapy+selenium框架学习笔记(保姆级别的,非常详细)
  • 【Linux】Linux环境基础开发工具_3
  • 数字水印 | 图像噪声攻击(高斯/椒盐/泊松/斑点)
  • LeetCode-47 全排列Ⅱ
  • list 的实现
  • 一个程序员的牢狱生涯(47)学法
  • 微信小程序-页面导航
  • 计算机网络- 特定服务类型(Type of Service, TOS) 服务质量(Quality of Service, QoS)
  • 2.6 Docker部署多个前端项目
  • 如何格式化只读U盘?
  • 【并查集】专题练习
  • 服装连锁店收银系统需要具备的五大功能
  • IMU状态预积分代码实现 —— IMU状态预积分类
  • C语言编程:探索最小公倍数的奥秘
  • Java设计模式-活动对象与访问者
  • 用HAL库改写江科大的stm32入门-6-3 PWM驱动LED呼吸灯
  • [数据集][目标检测]喝水检测数据集VOC+YOLO格式995张3类别
  • 【C++】开源:RabbitMQ安装与配置使用(SimpleAmqpClient)
  • git使用流程与规范
  • 力扣 264. 丑数 II python AC
  • resetlogs强制拉库失败并使用备份system文件还原数据库故障处理---惜分飞
  • 解析Java中1000个常用类:Error类,你学会了吗?
  • 【C++】——string模拟实现
  • unity2D跑酷游戏
  • OWASP top10--SQL注入(四、sqlmap安装及使用)
  • Java基础入门day62