当前位置: 首页 > news >正文

IMU状态预积分代码实现 —— IMU状态预积分类

IMU状态预积分代码实现 —— IMU状态预积分类

  • 实现IMU状态预积分类

实现IMU状态预积分类

首先,实现预积分自身的结构。一个预积分类应该存储一下数据:

  • 预积分的观测量 △ R ~ i j , △ v ~ i j , △ p ~ i j \bigtriangleup \tilde{R} _{ij},\bigtriangleup \tilde{v} _{ij},\bigtriangleup \tilde{p} _{ij} R~ij,v~ij,p~ij
  • 预积分开始时的IMU零偏 b g , b a b_{g},b_{a} bg,ba
  • 在积分时期内的测量噪声 Σ i , k + 1 \Sigma _{i,k+1} Σi,k+1
  • 各积分量对IMU零偏的雅克比矩阵
  • 整个积分时间 △ t i j \bigtriangleup t_{ij} tij

以上都是必要的信息。除此之外,也可以将IMU的读数记录在预积分类中(当然,也可以不记录,因为都已经积分过了)。同时,IMU的测量噪声和零偏随机游走噪声也可以作为配置参数,写在预积分类中。

声明这个类

class IMUPreintegration {

参数配置项
其中包括:

  • 陀螺仪初始零偏
  • 加速度计初始零偏
  • 陀螺噪声
  • 加计噪声
    /// 参数配置项/// 初始的零偏需要设置,其他可以不改struct Options {Options() {}Vec3d init_bg_ = Vec3d::Zero();  // 初始零偏Vec3d init_ba_ = Vec3d::Zero();  // 初始零偏double noise_gyro_ = 1e-2;       // 陀螺噪声,标准差double noise_acce_ = 1e-1;       // 加计噪声,标准差};

构造函数

IMUPreintegration(Options options = Options());

中间省略函数的声明,之后再写。

下面完成类的成员变量定义
整体预积分时间

    double dt_ = 0;                          // 整体预积分时间

噪声矩阵,累积噪声矩阵 Σ i , k + 1 \Sigma _{i,k+1} Σi,k+1 ,测量噪声矩阵 C o v ( η d , k ) Cov(\eta_{d,k} ) Cov(ηd,k)

    Mat9d cov_ = Mat9d::Zero();              // 累计噪声矩阵Mat6d noise_gyro_acce_ = Mat6d::Zero();  // 测量噪声矩阵

预积分开始时的IMU零偏 b g , b a b_{g},b_{a} bg,ba

    // 零偏Vec3d bg_ = Vec3d::Zero();Vec3d ba_ = Vec3d::Zero();

预积分的观测量 △ R ~ i j , △ v ~ i j , △ p ~ i j \bigtriangleup \tilde{R} _{ij},\bigtriangleup \tilde{v} _{ij},\bigtriangleup \tilde{p} _{ij} R~ij,v~ij,p~ij

    // 预积分观测量SO3 dR_;Vec3d dv_ = Vec3d::Zero();Vec3d dp_ = Vec3d::Zero();

各积分量对IMU零偏的雅克比矩阵

    // 雅可比矩阵Mat3d dR_dbg_ = Mat3d::Zero();Mat3d dV_dbg_ = Mat3d::Zero();Mat3d dV_dba_ = Mat3d::Zero();Mat3d dP_dbg_ = Mat3d::Zero();Mat3d dP_dba_ = Mat3d::Zero();

因为IMU零偏相关的噪声项并不直接和预积分类有关,所以将它们挪到优化类当中。这个类主要完成对IMU数据进行预积分操作,然后提供积分之后的观测量与噪声值。

下面来看单个IMU的积分函数,首先在类中进行声明。

    /*** 插入新的IMU数据* @param imu   imu 读数* @param dt    时间差*/void Integrate(const IMU &imu, double dt);

来看函数具体实现

整体而言,它按照以下顺序更新内部的成员变量:

  1. 更新位置和速度的测量值
  2. 更新运动模型的噪声矩阵
  3. 更新观测量对零偏的各雅克比矩阵
  4. 更新旋转部分的测量值
  5. 更新积分时间在这里插入代码片
void IMUPreintegration::Integrate(const IMU &imu, double dt) {

去掉零偏的测量

    Vec3d gyr = imu.gyro_ - bg_;  // 陀螺Vec3d acc = imu.acce_ - ba_;  // 加计

更新预积分速度观测量和位置观测量

        // 更新dv, dpdp_ = dp_ + dv_ * dt + 0.5f * dR_.matrix() * acc * dt * dt;dv_ = dv_ + dR_ * acc * dt;

对应公式为
在这里插入图片描述
在这里插入图片描述
预积分旋转观测 dR先不更新,因为A, B阵还需要现在的dR

下面计算运动方程雅克比矩阵系数A、B阵,用于更新噪声项
在这里插入图片描述
在这里插入图片描述

    // 运动方程雅可比矩阵系数,A,B阵,// 另外两项在后面Eigen::Matrix<double, 9, 9> A;A.setIdentity();Eigen::Matrix<double, 9, 6> B;B.setZero();

加速度计的伴随矩阵和t的平方

    Mat3d acc_hat = SO3::hat(acc);double dt2 = dt * dt;

公式中的这个地方有用到,避免重复计算
在这里插入图片描述

    A.block<3, 3>(3, 0) = -dR_.matrix() * dt * acc_hat;A.block<3, 3>(6, 0) = -0.5f * dR_.matrix() * acc_hat * dt2;A.block<3, 3>(6, 3) = dt * Mat3d::Identity();

计算A矩阵中对应的各个块,分别对应公式如下,A矩阵中的A.block<3, 3>(0, 0)块,之后用更新完的dR 更新
在这里插入图片描述

    B.block<3, 3>(3, 3) = dR_.matrix() * dt;B.block<3, 3>(6, 3) = 0.5f * dR_.matrix() * dt2;

更新B矩阵的各块,分别对应公式如下
在这里插入图片描述

    // 更新各雅可比dP_dba_ = dP_dba_ + dV_dba_ * dt - 0.5f * dR_.matrix() * dt2;                     dP_dbg_ = dP_dbg_ + dV_dbg_ * dt - 0.5f * dR_.matrix() * dt2 * acc_hat * dR_dbg_; dV_dba_ = dV_dba_ - dR_.matrix() * dt;                                             dV_dbg_ = dV_dbg_ - dR_.matrix() * dt * acc_hat * dR_dbg_;     

更新各雅克比矩阵对应公式依次为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面更新预积分旋转部分观测量

    // 旋转部分Vec3d omega = gyr * dt;         // 转动量Mat3d rightJ = SO3::jr(omega);  // 右雅可比SO3 deltaR = SO3::exp(omega);   // exp后dR_ = dR_ * deltaR;             // 更新预积分旋转部分观测量

对应公式:
在这里插入图片描述
其中右雅克比矩阵的计算是为了更新上面的B矩阵

    A.block<3, 3>(0, 0) = deltaR.matrix().transpose();B.block<3, 3>(0, 0) = rightJ * dt;

利用更新完的dR和右雅克比矩阵更新A、B阵中对应的块
对应公式:
在这里插入图片描述

    // 更新噪声项cov_ = A * cov_ * A.transpose() + B * noise_gyro_acce_ * B.transpose();

利用填充好的A阵和B阵,来更新噪声项
对应公式如下:
在这里插入图片描述
其中 C o v ( η d , k ) Cov(\eta_{d,k} ) Cov(ηd,k)即代码中的noise_gyro_acce_的构成就是陀螺仪和加计的噪声构成的对角矩阵,在构造函数中构成的

    const float ng2 = options.noise_gyro_ * options.noise_gyro_;const float na2 = options.noise_acce_ * options.noise_acce_;noise_gyro_acce_.diagonal() << ng2, ng2, ng2, na2, na2, na2;

下则继续更新预积分旋转观测量对陀螺仪零偏的雅克比矩阵

    // 更新dR_dbgdR_dbg_ = deltaR.matrix().transpose() * dR_dbg_ - rightJ * dt;  

对应公式如下:
在这里插入图片描述

最后增加积分时间:

    // 增量积分时间dt_ += dt;

这样就完成了一次对IMU数据的操作。需要注意的是,如果不进行优化,则预积分和直接积分的效果是完全一致的,都是将IMU数据一次性地积分。在预积分之后,也可以向ESKF一样,从起始状态向最终状态进行预测。

预测函数实现如下:

    /*** 从某个起始点开始预测积分之后的状态* @param start 起始时时刻状态* @return  预测的状态*/NavStated IMUPreintegration::Predict(const sad::NavStated &start, const Vec3d &grav) const {SO3 Rj = start.R_ * dR_;Vec3d vj = start.R_ * dv_ + start.v_ + grav * dt_;Vec3d pj = start.R_ * dp_ + start.p_ + start.v_ * dt_ + 0.5f * grav * dt_ * dt_;auto state = NavStated(start.timestamp_ + dt_, Rj, pj, vj);state.bg_ = bg_;state.ba_ = ba_;return state;}

与ESKF不同的是,预积分可以对多个IMU数据进行预测,可以从任意起始时刻向后预测,而ESKF通常只在当前状态下,针对单个IMU数据,向下一时刻预测。

获取修正之后的观测量,bias可以与预积分时期的不同,会有一阶修正

// 预积分旋转零偏更新修正后测量值
SO3 IMUPreintegration::GetDeltaRotation(const Vec3d &bg) { return dR_ * SO3::exp(dR_dbg_ * (bg - bg_)); }

对应公式为:
在这里插入图片描述
预积分速度零偏更新修正后测量值

    // 预积分速度零偏更新修正后测量值Vec3d IMUPreintegration::GetDeltaVelocity(const Vec3d &bg, const Vec3d &ba) {return dv_ + dV_dbg_ * (bg - bg_) + dV_dba_ * (ba - ba_);}

对应公式为:
在这里插入图片描述
预积分位置零偏更新修正后测量值

    // 预积分位置零偏更新修正后测量值Vec3d IMUPreintegration::GetDeltaPosition(const Vec3d &bg, const Vec3d &ba) {return dp_ + dP_dbg_ * (bg - bg_) + dP_dba_ * (ba - ba_);}

对应公式为:
在这里插入图片描述

http://www.lryc.cn/news/359069.html

相关文章:

  • C语言编程:探索最小公倍数的奥秘
  • Java设计模式-活动对象与访问者
  • 用HAL库改写江科大的stm32入门-6-3 PWM驱动LED呼吸灯
  • [数据集][目标检测]喝水检测数据集VOC+YOLO格式995张3类别
  • 【C++】开源:RabbitMQ安装与配置使用(SimpleAmqpClient)
  • git使用流程与规范
  • 力扣 264. 丑数 II python AC
  • resetlogs强制拉库失败并使用备份system文件还原数据库故障处理---惜分飞
  • 解析Java中1000个常用类:Error类,你学会了吗?
  • 【C++】——string模拟实现
  • unity2D跑酷游戏
  • OWASP top10--SQL注入(四、sqlmap安装及使用)
  • Java基础入门day62
  • Oracle中两张表具有相同结构,如何将一张表内容全部插入到另一个表中
  • 比特币的理论上限是多少个?
  • LeetCode-131 分割回文串
  • Flutter 中的 SliverPrototypeExtentList 小部件:全面指南
  • NeuralForecast 推理 - 数据集从文件dataset.pkl读
  • TS-类型转换(显式)
  • protobufjs 配置踩坑记录
  • freeswitch官方仓库
  • element ui el-calendar日历组件完整代码
  • 初识java——javaSE(8)异常
  • C语言面试题11至20题
  • 视频汇聚EasyCVR综合安防平台对接GA/T1400公安视图库及应用方案
  • 在Github找自己想要的的项目
  • 第16篇:JTAG UART IP应用<三>
  • Python——Selenium快速上手+方法(一站式解决问题)
  • 2024最新群智能优化算法:大甘蔗鼠算法(Greater Cane Rat Algorithm,GCRA)求解23个函数,提供MATLAB代码
  • 苍穹外卖数据可视化