当前位置: 首页 > news >正文

100道面试必会算法-27-美团2024面试第一题-前缀和矩阵

100道面试必会算法-27-美团2024面试第一题-前缀和矩阵

在这里插入图片描述

问题解读

给定一个 n x n 的二进制矩阵,每个元素是 0 或 1。我们的任务是计算矩阵中所有边长为 k 的子矩阵中,包含特定数量 1 的情况。例如,我们希望找到所有边长为 k 的子矩阵中包含 k*k/2 个 1 的子矩阵数量。

输入格式


第一行:一个整数 n,表示矩阵的大小。
接下来的 n 行:每行包含一个长度为 n 的二进制字符串,表示矩阵中的一行。

输出格式


对于每个可能的子矩阵边长 k,输出一个整数,表示边长为 k 且包含特定数量 1 的子矩阵的数量。如果 k 是奇数

计算一个大小为 n x n 的矩阵中,所有边长为 k 的子矩阵中包含特定数量的 1 的情况。通过三个主要步骤来解决这个问题:

  1. 读取输入并初始化矩阵:读取一个 n x n 的矩阵,并构建前缀和矩阵 msum
  2. 计算前缀和:通过构建前缀和矩阵,可以快速计算任何子矩阵的元素和。
  3. 检查子矩阵:对于每个可能的子矩阵,检查其是否满足条件。
什么是前缀和矩阵

前缀和矩阵是一种用于快速计算二维数组(矩阵)中子矩阵元素之和的数据结构。通过预先计算和存储每个位置的前缀和,我们可以在常数时间内计算任意子矩阵的元素和。

前缀和矩阵的构建

给定一个大小为 n x n 的矩阵 nums,我们可以构建一个前缀和矩阵 m。前缀和矩阵的每个元素 m[i][j] 表示从矩阵的左上角 (1,1) 到位置 (i,j) 的所有元素的和。其递推公式为:

m[i][j]=m[i−1][j]+m[i][j−1]−m[i−1][j−1]+nums[i][j]

在边界条件下:

  • m[i][0]m[0][j] 初始为 0,因为这些位置不可能有左上方的矩阵。

解决方案

我们将通过以下步骤来解决这个问题:

  1. 读取输入并初始化矩阵:我们将读取输入的矩阵,并使用两个矩阵 numsm 来存储矩阵元素和前缀和。
  2. 计算前缀和:前缀和矩阵 m 可以帮助我们快速计算任何子矩阵的元素和。前缀和矩阵的计算公式为: m[i][j]=m[i−1][j]+m[i][j−1]−m[i−1][j−1]+nums[i][j]
  3. 检查子矩阵:对于每个可能的子矩阵,我们通过前缀和矩阵快速计算其元素和,并检查其是否满足条件。

代码实现

import java.util.Scanner;public class Meituan {public static void main(String[] args) {Scanner input = new Scanner(System.in);int n = input.nextInt();char[] chars;int[][] m = new int[n + 1][n + 1];int[][] nums = new int[n + 1][n + 1];// 初始化矩阵和前缀和矩阵for (int i = 1; i <= n; i++) {chars = input.next().toCharArray();for (int j = 1; j <= n; j++) {nums[i][j] = chars[j - 1] - '0';m[i][j] = m[i - 1][j] + m[i][j - 1] - m[i - 1][j - 1] + nums[i][j];}}// 遍历每个可能的子矩阵边长 kfor (int k = 1; k <= n; k++) {if (k % 2 != 0) {System.out.println(0);continue;}int ans = 0;// 遍历每个可能的子矩阵for (int i = 1; i + k - 1 <= n; i++) {for (int j = 1; j + k - 1 <= n; j++) {int x = i + k - 1;int y = j + k - 1;int sum = m[x][y] - m[i - 1][y] - m[x][j - 1] + m[i - 1][j - 1];if (sum == k * k / 2) ans++;}}System.out.println(ans);}}
}

代码解析

  1. 初始化矩阵和前缀和矩阵
    • nums 用于存储输入的二进制矩阵。
    • m 用于存储前缀和矩阵,通过累加计算得到。
  2. 计算前缀和
    • 前缀和矩阵 m[i][j] 通过公式 m[i][j] = m[i-1][j] + m[i][j-1] - m[i-1][j-1] + nums[i][j] 计算得到。
    • 这样可以在常数时间内计算任何子矩阵的元素和。
  3. 遍历子矩阵
    • 对于每个可能的子矩阵,计算其元素和 sum
    • 检查该和是否等于 k*k/2,如果是,则计数器 ans 增加。

总结

任何子矩阵的元素和。
3. 遍历子矩阵

  • 对于每个可能的子矩阵,计算其元素和 sum
  • 检查该和是否等于 k*k/2,如果是,则计数器 ans 增加。

总结

通过使用前缀和矩阵,可以高效地计算出所有边长为 k 的子矩阵中包含特定数量 1 的情况。这种方法大大减少了时间复杂度,能够在合理的时间内解决较大的输入规模。

http://www.lryc.cn/news/358900.html

相关文章:

  • 从摇一摇到弹窗,AD无处不在?为了不再受打扰,推荐几款好用的屏蔽软件,让手机电脑更清爽
  • HackTheBox-Machines--Nibbles
  • 东方博宜1703 - 小明买水果
  • mac电脑用谷歌浏览器对安卓手机H5页面进行inspect
  • 动手学深度学习(Pytorch版)代码实践-深度学习基础-01基础函数的使用
  • vm-bhyve:bhyve虚拟机的管理系统@FreeBSD
  • 【Java】刚刚!突然!紧急通知!垃圾回收!
  • [Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解
  • 【稳定检索】2024年心理学与现代化教育、媒体国际会议(PMEM 2024)
  • 深入了解diffusion model
  • TransmittableThreadLocal原理
  • 华为昇腾310B初体验,OrangePi AIpro开发板使用测评
  • GPTQ 量化大模型
  • 【GD32】05 - PWM 脉冲宽度调制
  • JVM思维导图
  • Ollama+OpenWebUI+Phi3本地大模型入门
  • 实战15:bert 命名实体识别、地址解析、人名电话地址抽取系统-完整代码数据
  • js 表格添加|删除一行交互
  • 如何选择合适的服务器硬件和配置?
  • Prometheus + Grafana + Alertmanager 系统监控
  • 5.23R语言-参数假设检验
  • rnn 和lstm源码学习笔记
  • 解析Java中1000个常用类:CharSequence类,你学会了吗?
  • 微服务远程调用之拦截器实战
  • 德人合科技——天锐绿盾内网安全管理软件 | -文档透明加密模块
  • 超融合架构下,虚拟机高可用机制如何构建?
  • 工厂模式详情
  • 【Word】调整列表符号与后续文本的间距
  • 匠心独运,B 端系统 UI 演绎华章之美
  • Java电商平台-开放API接口签名验证(小程序/APP)