当前位置: 首页 > news >正文

十种常用数据分析模型

1-线性回归(Linear Regression)

场景:预测商品销售额

  • 优点:简单易用,结果易于解释
  • 缺点:假设线性关系,容易受到异常值影响
  • 概念:建立自变量和因变量之间线性关系的模型。
  • 公式:[ y = b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n ]

代码示例:

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 假设我们有一个包含商品销售数据的DataFrame
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'sale_qtty': [50, 60, 55, 65]
})# 特征和目标变量
X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['sale_qtty']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

结果与判断:

通过模型预测销售量,评估误差可以帮助改进定价策略。

2-逻辑回归(Logistic Regression)

场景:预测订单是否有效

  • 优点:适用于二分类问题,解释性强
  • 缺点:不适用于多分类或连续型结果预测
  • 概念:用于处理二分类问题,输出值在0到1之间。
  • 公式:[ P(Y=1|X) = \frac{1}{1 + e^{-(b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n)}} ]

代码示例:

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0],'sale_ord_valid_flag': [1, 1, 1, 0, 0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['sale_ord_valid_flag']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print(f'Confusion Matrix: \\n{cm}')

结果与判断:

通过预测订单有效性,可以优化订单审核流程,减少无效订单的产生。

3-决策树(Decision Tree)

场景:根据用户行为特征分类用户等级

  • 优点:易于理解和解释,可以处理非线性关系
  • 缺点:容易过拟合
  • 概念:通过一系列规则对数据进行分类或预测。
  • 公式:决策树根据特征值进行分裂,并构建一棵树状结构来表示决策过程。

代码示例:

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0],'user_lv_cd': [10, 10, 10, 0, 0, 1]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['user_lv_cd']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
report = classification_report(y_test, y_pred)
print(f'Classification Report: \\n{report}')

结果与判断:

分类用户等级,帮助精准营销和个性化推荐。

4-随机森林(Random Forest)

场景:预测用户实际支付金额

  • 优点:降低过拟合,处理高维数据
  • 缺点:训练时间长,结果不易解释
  • 概念:由多个决策树组成的集成学习模型。
  • 公式:通过投票方式聚合多个决策树的预测结果来提高预测准确度。

代码示例:

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score# 数据
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'user_actual_pay_amount': [976.0, 978.99, 979.0, 875.0]
})X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['user_actual_pay_amount']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
r2 = r2_score(y_test, y_pred)
print(f'R2 Score: {r2}')

结果与判断:

预测用户支付金额,优化促销策略和定价。

5-支持向量机(SVM)

场景:分类订单是否取消

  • 优点:有效处理高维数据,适合小样本
  • 缺点:训练时间长,参数调优复杂
  • 概念:用于分类和回归的监督学习模型。
  • 公式:通过找到最大边距超平面来划分不同类别数据点

代码示例:

from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0],'cancel_flag': [0, 0, 0, 1, 1, 1]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['cancel_flag']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = SVC()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

结果与判断:

预测订单是否取消,优化库存管理。

6-K-均值聚类(K-Means Clustering)

场景:用户行为数据聚类分析

  • 优点:易于实现和解释
  • 缺点:需要预先定义聚类数,不适用于非球形数据
  • 概念:将数据点划分为K个类别的无监督学习算法。
  • 公式:最小化每个聚类中数据点与该聚类中心的距离的平方和。

代码示例:

from sklearn.cluster import KMeans# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]# 训练模型
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)# 聚类结果
data['cluster'] = kmeans.labels_
print(data)

结果与判断:

聚类用户行为数据,识别用户群体,制定个性化营销策略。

7-主成分分析(PCA)

场景:降维处理用户行为数据

  • 优点:降低数据维度,去除冗余信息
  • 缺点:解释性差,可能丢失有用信息
  • 概念:降维技术,用于发现数据中的主要特征。
  • 公式:通过线性变换将原始数据映射到低维空间,使得数据在新空间中的方差最大化。

代码示例:

from sklearn.decomposition import PCA# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]# 降维处理
pca = PCA(n_components=1)
principalComponents = pca.fit_transform(X)
data['principal_component'] = principalComponents
print(data)

结果与判断:

降维处理后,数据可视化更容易,识别主成分,简化模型。

8-时间序列分析(Time Series Analysis)

场景:销售数据时间序列预测

  • 优点:适用于时间相关数据,预测未来趋势
  • 缺点:需要时间顺序数据,复杂性高
  • 概念:研究时间序列数据的模式、趋势和周期性,并用于预测未来值。
  • 公式:时间序列模型可以包括自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

代码示例:

import pandas as pd
from statsmodels.tsa.arima.model import ARIMA# 数据
data = pd.Series([976, 978.99, 979, 800, 850, 900], index=pd.date_range(start='2020-01-01', periods=6, freq='M'))# 训练模型
model = ARIMA(data, order=(1, 1, 1))
model_fit = model.fit()# 预测
forecast = model_fit.forecast(steps=3)[0]
print(f'Forecast: {forecast}')

结果与判断:

预测未来销售趋势,帮助库存管理和销售计划。

9-关联规则分析(Association Rule Learning)

场景:购物篮分析

  • 优点:发现项间关联规则,适合市场篮子分析
  • 缺点:计算复杂度高,规则解释性差
  • 概念:用于发现数据集中的物品之间的关联关系,常用于购物篮分析和市场篮分析。
  • 公式:关联规则通常表示为“A ➞ B”的形式,其中A和B是物品集合,相关性通过支持度和置信度来衡量。

代码示例:

from mlxtend.frequent_patterns import apriori, association_rules# 数据
data = pd.DataFrame({'milk': [1, 1, 0, 0, 1],'bread': [1, 1, 1, 0, 1],'butter': [0, 1, 1, 0, 1]
})# 频繁项集
frequent_itemsets = apriori(data, min_support=0.6, use_colnames=True)
# 关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
print(rules)

结果与判断:

发现商品间的关联规则,优化商品组合销售和促销策略。

10-XGBoost

场景:提升模型的预测精度

  • 优点:处理大规模数据,预测精度高
  • 缺点:模型复杂,计算资源消耗大
  • 概念:集成学习方法,通过训练多个弱分类器并加权组合得到一个强分类器。
  • 公式:使用加权投票来提高分类准确率,弱分类器的误差率会影响其权重。

代码示例:

import xgboost as xgb
from sklearn.metrics import mean_squared_error# 数据
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'user_actual_pay_amount': [976.0, 978.99, 979.0, 875.0]
})X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['user_actual_pay_amount']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = xgb.XGBRegressor(objective ='reg:squarederror')
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

结果与判断:

通过提升模型的预测精度,优化业务决策和营销策略。

(交个朋友/技术接单/ai办公/性价比资源)

245561cc07c04e2bb13191bcc511ddc5.jpg

 

 

http://www.lryc.cn/news/357730.html

相关文章:

  • salesforce 公式字段 判断一个字段是否在某个多选列表中
  • C++STL容器系列(三)list的详细用法和底层实现
  • IEEE Latex模版踩雷避坑指南
  • 【C++】类与对象——多态详解
  • WordPress建网站公司 建易WordPress建站
  • MySQL正则替换整个单词
  • Java设计模式:享元模式实现高效对象共享与内存优化(十一)
  • 景源畅信电商:抖音开店步骤是什么?
  • Notepad++不显示CRLF的方法
  • 前端开发工程师——AngularJS
  • 【AI算法岗面试八股面经【超全整理】——概率论】
  • vue3 使用vant
  • 网络请求客户端WebClient的使用
  • unity制作app(9)--拍照 相册 上传照片
  • 【busybox记录】【shell指令】mkfifo
  • 使用Jmeter进行性能测试的基本操作方法
  • Linux学习笔记(epoll,IO多路复用)
  • STM32定时器及输出PWM完成呼吸灯
  • 海外仓管理系统费用解析:如何选择高性价比的海外仓系统
  • 深度学习之学习率调度器Scheduler介绍
  • 蓝桥杯-AB路线(详细原创)
  • 计算机字符编码的发展
  • Java(六)——抽象类与接口
  • 【4.vi编辑器使用(下)】
  • 【数据结构】探索树中的奇妙世界
  • 搭建YOLOv10环境 训练+推理+模型评估
  • c++(一)
  • java面试中高频问题----1
  • ABB 控制柜
  • 【错误记录】HarmonyOS 运行报错 ( Failure INSTALL_PARSE_FAILED_USESDK_ERROR )