当前位置: 首页 > news >正文

Python 运筹优化13 Thompson Sampling 解读

说明

这部分应该是Multi-Armed Bandit的最后一部分了。

内容

1 On Line Ads

这个实验,最初的目的就是为了选出最佳的广告。首先,通过伯努利分布,模拟了某个广告的有效率。在真实场景里,我们是无法知道那个广告更好的。可能在train阶段,可以获得一些模糊的参考,但是使用强化学习的目的,就是让其随着现实返回进行自发调整。

可以把一个模型,或者一个版本视为一个bandit。强化框架的意义在于最大化的利用已有的一套bandit,在过程中,最优的bandit会自动浮现,从而解开最初建模阶段的一些迷惑。

class BernoulliBandit(object):def __init__(self, p):self.p = pdef display_ad(self):reward = np.random.binomial(n=1, p=self.p)return rewardadA = BernoulliBandit(0.004)
adB = BernoulliBandit(0.016)
adC = BernoulliBandit(0.02)
adD = BernoulliBandit(0.028)
adE = BernoulliBandit(0.031)ads = [adA, adB, adC, adD, adE]

2 强化学习

在之前的样例中,我们已经尝试了A/B/n test 、eps greedy、UCB等三个方法,现在是最后一种方法Thompson Sampling

初始化过程 :

这段代码看起来像是为Multi-Armed Bandit Proble 中的 Thompson Sampling 算法做准备。Thompson Sampling 是一种用于解决探索-利用困境的随机化算法,它基于贝叶斯方法,在每个时间步骤根据先验分布和观察到的奖励来更新每个臂的概率分布。

在 Thompson Sampling 中,每个臂都有一个 Beta 分布,其中 α 参数表示已经获得的奖励次数,β 参数表示已经尝试的次数减去获得奖励的次数。在每个时间步骤,根据每个臂的 Beta 分布随机抽样,选择具有最大样本值的臂作为当前时间步的动作。

n_prod = 100000
n_ads = len(ads)
alphas = np.ones(n_ads)
betas = np.ones(n_ads)
total_reward = 0
avg_rewards = []for i in range(n_prod):theta_samples = [np.random.beta(alphas[k], betas[k]) for k in range(n_ads)]ad_chosen = np.argmax(theta_samples)R = ads[ad_chosen].display_ad()alphas[ad_chosen] += Rbetas[ad_chosen] += 1 - Rtotal_reward += Ravg_reward_so_far = total_reward / (i + 1)avg_rewards.append(avg_reward_so_far)
df_reward_comparison['Thompson Sampling'] = avg_rewards

这段代码做了以下几件事情:

对于每个时间步骤 i,从每个臂的 Beta 分布中采样一个值 theta_samples。
选择具有最大 theta_samples 的臂作为当前时间步骤的动作 ad_chosen。
显示所选择广告,并获取奖励 R。
根据获得的奖励更新所选臂的 Alpha 和 Beta 参数。
计算当前总奖励 total_reward 和平均奖励 avg_reward_so_far。
将平均奖励添加到 avg_rewards 列表中。
将 avg_rewards 列表添加到 DataFrame 中,命名为 ‘Thompson Sampling’。

在这里插入图片描述

3 UCB

这个漏掉了,补一下

分别使用3个参数分别跑

# c = 0.1
# c = 1
c =10
n_prod = 100000
n_ads = len(ads)
ad_indices = np.array(range(n_ads))
Q = np.zeros(n_ads)
N = np.zeros(n_ads)
total_reward = 0
avg_rewards = []for t in range(1, n_prod + 1):if any(N==0):ad_chosen = np.random.choice(ad_indices[N==0])else:uncertainty = np.sqrt(np.log(t) / N)ad_chosen = np.argmax(Q +  c * uncertainty)R = ads[ad_chosen].display_ad()N[ad_chosen] += 1Q[ad_chosen] += (1 / N[ad_chosen]) * (R - Q[ad_chosen])total_reward += Ravg_reward_so_far = total_reward / tavg_rewards.append(avg_reward_so_far)df_reward_comparison['UCB, c={}'.format(c)] = avg_rewards

这段代码实现了上限置信区间(Upper Confidence Bound, UCB)算法。UCB算法通过平衡探索(Exploration)和利用(Exploitation)来选择动作。其中,参数c用于调整探索与利用之间的权衡。

这段代码中,c 参数用于控制探索的程度。较大的 c 值将会更加强调探索,而较小的 c 值则更加强调利用。

这段代码的逻辑如下:

如果有至少一个广告的点击次数为零,则在这些广告中随机选择一个。
否则,计算每个广告的置信区间上界,并选择置信区间上界最大的广告。
显示所选择的广告,并获取奖励。
更新所选广告的点击次数和平均奖励。
计算当前总奖励和平均奖励,将平均奖励添加到列表中。
将平均奖励列表添加到 DataFrame 中,命名为 ‘UCB, c={}’。

在这里插入图片描述

4 Next

Review一下这一章,然后找一个具体的实用样例来进行实测,最后发布为前后端微服务。

http://www.lryc.cn/news/348693.html

相关文章:

  • 计算机毕业设计 | SpringBoot健身房管理系统(附源码)
  • 大模型LLM 结合联网搜索增强isou
  • 软删除和硬删除的区别及实际应用
  • 算法加密-简介
  • 搞懂Docker(九)- 使用Docker Compose
  • EOCRSP-40NM7施耐德电机保护器EOCR-SP
  • 一文带你快速了解GPT-4o!内含免费使用指南!
  • react18【系列实用教程】useState (2024最新版)
  • 电商选品的数据是可以用爬虫进行采集的吗?
  • 数据特征降维 | 局部线性嵌入(LLE)
  • js发票查验、票据OCR接口助力解决发票录入与真假辨别难题
  • HTML静态网页成品作业(HTML+CSS+JS)——华为商城网页(1个页面)
  • 【吃透Java手写】5-RPC-简易版
  • express 本地https服务 接口、静态文件,并支持跨域
  • 从零手写实现 tomcat-08-tomcat 如何与 springboot 集成?
  • yarn 安装以及报错处理
  • 31万奖金池等你挑战!IJCAI 2024 第九届“信也科技杯”全球AI算法大赛正式开赛!聚焦AI尖端赛题!
  • 线性表—栈的实现
  • react+antd --- 日期选择器,动态生成日期表格表头
  • webgl入门-js与着色器间的数据传输
  • springmvc异常处理
  • 可拖动、连线的React画布组件有哪些? 官网分别是什么?
  • 专访 Staynex 创始人 Yuen Wong:酒店行业的变革者
  • 最新版Ceph( Reef版本)块存储简单对接k8s(上集)
  • 稳态大面积光伏组件IV测试太阳光模拟器
  • 编写HTTP协议代理的一些知识(源码)
  • LabVIEW天然气压缩因子软件设计
  • GCP谷歌云有什么数据库类型,该怎么选择
  • 项目经理之路:裁员与内卷下的生存策略
  • MWM触摸屏工控机维修TEM-EV0 EN00-Z312yy-xx