NLP(14)--文本匹配任务
前言
仅记录学习过程,有问题欢迎讨论
* 1. 输入问题
* 2. 匹配问题库(基础资源,FAQ)
* 3. 返回答案
文本匹配算法:
-
编辑距离算法(缺点)
- 字符之间没有语义相似度;
受无关词/停用词影响大;
受语序影响大
- 字符之间没有语义相似度;
-
Jaccard相似度(元素的交集/元素的并集)、
-
词向量(基于窗口;解决了语义相似的问题;文本转为数字,计算cos值来判断相似度)
-
深度学习-表示型(问题匹配问题比较合适,因为二者都是问题,所以转向量也方便)
两个话使用同一个Encoder向量 语义相似的score = 1,类似二分类- (Triplet Loss):
使得相同标签的样本再Embedding空间尽量接近(anchor和positive接近 away negative) - loss = max((D(p,a)-D(p,n)+margin,0)
- 优点:训练好的模型可以对知识库内的问题计算向量,在实际查找过程中,只对输入文本做一次向量化
- 缺点:在向量化的过程中不知道文本重点
- (Triplet Loss):
-
深度学习-交互型
- 输入一句话,但是两个样本拼接,利用attention机制来判断是否匹配(Q&A拼接去学习)
- 优点:通过对比把握句子重点
- 缺点:每次计算需要都需要两个输入
-
对比学习
- 输入一个样本,通过函数把样本改动,但还是相似,得到两个相似样本,进行bertEconder,pooling操作
-
海量向量查找:
- 可以用开源写好的库^^ Faiss Pinecore
- 避免遍历,避免和所有向量做距离计算(空间切割KD树,Kmeans方式切割)
代码
实现一个智能问答demo
"""
配置参数信息
"""
Config = {"model_path": "./output/","model_name": "model.pt","schema_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\schema.json","train_data_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\data.json","valid_data_path": r"D:\NLP\video\第八周\week8 文本匹配问题\data\valid.json","vocab_path": r"D:\NLP\video\第七周\data\vocab.txt","model_type": "rnn",# 正样本比例"positive_sample_rate": 0.5,"use_bert": False,# 文本向量大小"char_dim": 32,# 文本长度"max_len": 20,# 词向量大小"hidden_size": 128,# 训练 轮数"epoch_size": 15,# 批量大小"batch_size": 32,# 训练集大小"simple_size": 300,# 学习率"lr": 1e-3,# dropout"dropout": 0.5,# 优化器"optimizer": "adam",# 卷积核"kernel_size": 3,# 最大池 or 平均池"pooling_style": "max",# 模型层数"num_layers": 2,"bert_model_path": r"D:\NLP\video\第六周\bert-base-chinese",# 输出层大小"output_size": 2,# 随机数种子"seed": 987
}
load.py j加载数据文件
"""
数据加载
"""
import json
from collections import defaultdict
import randomimport torch
import torch.utils.data as Data
from torch.utils.data import DataLoader
from transformers import BertTokenizer# 获取字表集
def load_vocab(path):vocab = {}with open(path, 'r', encoding='utf-8') as f:for index, line in enumerate(f):word = line.strip()# 0留给padding位置,所以从1开始vocab[word] = index + 1vocab['unk'] = len(vocab) + 1return vocab# 数据预处理 裁剪or填充
def padding(input_ids, length):if len(input_ids) >= length:return input_ids[:length]else:padded_input_ids = input_ids + [0] * (length - len(input_ids))return padded_input_ids# 文本预处理
# 转化为向量
def sentence_to_index(text, length, vocab):input_ids = []for char in text:input_ids.append(vocab.get(char, vocab['unk']))# 填充or裁剪input_ids = padding(input_ids, length)return input_idsclass DataGenerator:def __init__(self, data_path, config):# 加载json数据self.load_know_base(config["train_data_path"])# 加载schema 相当于答案集self.schema = self.load_schema(config["schema_path"])self.data_path = data_pathself.config = configif self.config["model_type"] == "bert":self.tokenizer = BertTokenizer.from_pretrained(config["bert_model_path"])self.vocab = load_vocab(config["vocab_path"])self.config["vocab_size"] = len(self.vocab)self.train_flag = Noneself.load_data()def __len__(self):if self.train_flag:return self.config["simple_size"]else:return len(self.data)# 这里需要返回随机的样本def __getitem__(self, idx):if self.train_flag:# return self.random_train_sample() # 随机生成一个训练样本# triplet loss:return self.random_train_sample_for_triplet_loss()else:return self.data[idx]# 针对获取的文本 load_know_base = {target : [questions]} 做处理# 传入两个样本 正样本为相同target数据 负样本为不同target数据# 训练集和验证集不一致def load_data(self):self.train_flag = self.config["train_flag"]dataset_x = []dataset_y = []self.knwb = defaultdict(list)if self.train_flag:for target, questions in self.target_to_questions.items():for question in questions:input_id = sentence_to_index(question, self.config["max_len"], self.vocab)input_id = torch.LongTensor(input_id)# self.schema[target] 下标 把每个question转化为向量append放入一个target下self.knwb[self.schema[target]].append(input_id)else:with open(self.data_path, encoding="utf8") as f:for line in f:line = json.loads(line)assert isinstance(line, list)question, target = lineinput_id = sentence_to_index(question, self.config["max_len"], self.vocab)# input_id = torch.LongTensor(input_id)label_index = torch.LongTensor([self.schema[target]])# self.data.append([input_id, label_index])dataset_x.append(input_id)dataset_y.append(label_index)self.data = Data.TensorDataset(torch.tensor(dataset_x), torch.tensor(dataset_y))return# 加载知识库def load_know_base(self, know_base_path):self.target_to_questions = {}with open(know_base_path, encoding="utf8") as f:for index, line in enumerate(f):content = json.loads(line)questions = content["questions"]target = content["target"]self.target_to_questions[target] = questionsreturn# 加载schema 相当于答案集def load_schema(self, param):with open(param, encoding="utf8") as f:return json.loads(f.read())# 训练集随机生成一个样本# 依照一定概率生成负样本或正样本# 负样本从随机两个不同的标准问题中各随机选取一个# 正样本从随机一个标准问题中随机选取两个def random_train_sample(self):target = random.choice(list(self.knwb.keys()))# 随机正样本:# 随机正样本if random.random() <= self.config["positive_sample_rate"]:if len(self.knwb[target]) <= 1:return self.random_train_sample()else:question1 = random.choice(self.knwb[target])question2 = random.choice(self.knwb[target])# 一组# dataset_x.append([question1, question2])# # 二分类任务 同一组的question target = 1# dataset_y.append([1])return [question1, question2, torch.LongTensor([1])]else:# 随机负样本:p, n = random.sample(list(self.knwb.keys()), 2)question1 = random.choice(self.knwb[p])question2 = random.choice(self.knwb[n])# dataset_x.append([question1, question2])# dataset_y.append([-1])return [question1, question2, torch.LongTensor([-1])]# triplet_loss随机生成3个样本 锚样本A, 正样本P, 负样本Ndef random_train_sample_for_triplet_loss(self):target = random.choice(list(self.knwb.keys()))# question1锚样本 question2为同一个target下的正样本 question3 为其他target下样本question1 = random.choice(self.knwb[target])question2 = random.choice(self.knwb[target])question3 = random.choice(self.knwb[random.choice(list(self.knwb.keys()))])return [question1, question2, question3]# 用torch自带的DataLoader类封装数据
def load_data_batch(data_path, config, shuffle=True):dg = DataGenerator(data_path, config)if config["train_flag"]:dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)else:dl = DataLoader(dg.data, batch_size=config["batch_size"], shuffle=shuffle)return dlif __name__ == '__main__':from config import ConfigConfig["train_flag"] = True# dg = DataGenerator(Config["train_data_path"], Config)dataset = load_data_batch(Config["train_data_path"], Config)# print(len(dg))# print(dg[0])for index, dataset in enumerate(dataset):input_id1, input_id2, input_id3 = datasetprint(input_id1)print(input_id2)print(input_id3)
main.py 主方法
import torch
import os
import random
import os
import numpy as np
import logging
from config import Config
from model import TorchModel, choose_optimizer, SiameseNetwork
from loader import load_data_batch
from evaluate import Evaluator# [DEBUG, INFO, WARNING, ERROR, CRITICAL]logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)"""
模型训练主程序
"""
# 通过设置随机种子来复现上一次的结果(避免随机性)
seed = Config["seed"]
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)def main(config):# 保存模型的目录if not os.path.isdir(config["model_path"]):os.mkdir(config["model_path"])# 加载数据dataset = load_data_batch(config["train_data_path"], config)# 加载模型model = SiameseNetwork(config)# 是否使用gpuif torch.cuda.is_available():logger.info("gpu可以使用,迁移模型至gpu")model.cuda()# 选择优化器optim = choose_optimizer(config, model)# 加载效果测试类evaluator = Evaluator(config, model, logger)for epoch in range(config["epoch_size"]):epoch += 1logger.info("epoch %d begin" % epoch)epoch_loss = []# 训练模型model.train()for batch_data in dataset:if torch.cuda.is_available():batch_data = [d.cuda() for d in batch_data]# x, y = dataiter# 反向传播optim.zero_grad()s1, s2, s3 = batch_data # 输入变化时这里需要修改,比如多输入,多输出的情况# 计算梯度loss = model(s1, s2, s3)# 梯度更新loss.backward()# 优化器更新模型optim.step()# 记录损失epoch_loss.append(loss.item())logger.info("epoch average loss: %f" % np.mean(epoch_loss))# 测试模型效果acc = evaluator.eval(epoch)# 可以用model_type model_path epoch 三个参数来保存模型model_path = os.path.join(config["model_path"], "epoch_%d_%s.pth" % (epoch, config["model_type"]))torch.save(model.state_dict(), model_path) # 保存模型权重returnif __name__ == "__main__":from config import ConfigConfig["train_flag"] = Truemain(Config)# for model in ["cnn"]:# Config["model_type"] = model# print("最后一轮准确率:", main(Config), "当前配置:", Config["model_type"])# 对比所有模型# 中间日志可以关掉,避免输出过多信息# 超参数的网格搜索# for model in ["gated_cnn"]:# Config["model_type"] = model# for lr in [1e-3, 1e-4]:# Config["learning_rate"] = lr# for hidden_size in [128]:# Config["hidden_size"] = hidden_size# for batch_size in [64, 128]:# Config["batch_size"] = batch_size# for pooling_style in ["avg"]:# Config["pooling_style"] = pooling_style# 可以把输出放入文件中 便于查看# print("最后一轮准确率:", main(Config), "当前配置:", Config)
evaluate.py 评估模型文件
"""
模型效果测试
"""
import torch
from loader import load_data_batchclass Evaluator:def __init__(self, config, model, logger):self.config = configself.model = modelself.logger = logger# 选择验证集合config['train_flag'] = Falseself.valid_data = load_data_batch(config["valid_data_path"], config, shuffle=False)config['train_flag'] = Trueself.train_data = load_data_batch(config["train_data_path"], config)self.stats_dict = {"correct": 0, "wrong": 0} # 用于存储测试结果def eval(self, epoch):self.logger.info("开始测试第%d轮模型效果:" % epoch)self.stats_dict = {"correct": 0, "wrong": 0} # 清空前一轮的测试结果self.model.eval()self.knwb_to_vector()for index, batch_data in enumerate(self.valid_data):if torch.cuda.is_available():batch_data = [d.cuda() for d in batch_data]input_id, labels = batch_data # 输入变化时这里需要修改,比如多输入,多输出的情况with torch.no_grad():test_question_vectors = self.model(input_id) # 不输入labels,使用模型当前参数进行预测self.write_stats(test_question_vectors, labels)self.show_stats()returndef write_stats(self, test_question_vectors, labels):assert len(labels) == len(test_question_vectors)for test_question_vector, label in zip(test_question_vectors, labels):# 通过一次矩阵乘法,计算输入问题和知识库中所有问题的相似度# test_question_vector shape [vec_size] knwb_vectors shape = [n, vec_size]res = torch.mm(test_question_vector.unsqueeze(0), self.knwb_vectors.T)hit_index = int(torch.argmax(res.squeeze())) # 命中问题标号hit_index = self.question_index_to_standard_question_index[hit_index] # 转化成标准问编号if int(hit_index) == int(label):self.stats_dict["correct"] += 1else:self.stats_dict["wrong"] += 1return# 将知识库中的问题向量化,为匹配做准备# 每轮训练的模型参数不一样,生成的向量也不一样,所以需要每轮测试都重新进行向量化def knwb_to_vector(self):self.question_index_to_standard_question_index = {}self.question_ids = []for standard_question_index, question_ids in self.train_data.dataset.knwb.items():for question_id in question_ids:# 记录问题编号到标准问题标号的映射,用来确认答案是否正确self.question_index_to_standard_question_index[len(self.question_ids)] = standard_question_indexself.question_ids.append(question_id)with torch.no_grad():question_matrixs = torch.stack(self.question_ids, dim=0)if torch.cuda.is_available():question_matrixs = question_matrixs.cuda()self.knwb_vectors = self.model(question_matrixs)# 将所有向量都作归一化 v / |v|self.knwb_vectors = torch.nn.functional.normalize(self.knwb_vectors, dim=-1)returndef show_stats(self):correct = self.stats_dict["correct"]wrong = self.stats_dict["wrong"]self.logger.info("预测集合条目总量:%d" % (correct + wrong))self.logger.info("预测正确条目:%d,预测错误条目:%d" % (correct, wrong))self.logger.info("预测准确率:%f" % (correct / (correct + wrong)))self.logger.info("--------------------")return correct / (correct + wrong)
model.py
import torch
import torch.nn as nn
from torch.optim import Adam, SGD
from transformers import BertModel"""
建立网络模型结构
"""class TorchModel(nn.Module):def __init__(self, config):super(TorchModel, self).__init__()hidden_size = config["hidden_size"]vocab_size = config["vocab_size"] + 1output_size = config["output_size"]model_type = config["model_type"]num_layers = config["num_layers"]self.use_bert = config["use_bert"]self.emb = nn.Embedding(vocab_size + 1, hidden_size, padding_idx=0)if model_type == 'rnn':self.encoder = nn.RNN(input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers,batch_first=True)elif model_type == 'lstm':# 双向lstm,输出的是 hidden_size * 2(num_layers 要写2)self.encoder = nn.LSTM(hidden_size, hidden_size, num_layers=num_layers)elif self.use_bert:self.encoder = BertModel.from_pretrained(config["bert_model_path"])# 需要使用预训练模型的hidden_sizehidden_size = self.encoder.config.hidden_sizeelif model_type == 'cnn':self.encoder = CNN(config)elif model_type == "gated_cnn":self.encoder = GatedCNN(config)elif model_type == "bert_lstm":self.encoder = BertLSTM(config)# 需要使用预训练模型的hidden_sizehidden_size = self.encoder.config.hidden_sizeself.classify = nn.Linear(hidden_size, output_size)self.pooling_style = config["pooling_style"]self.loss = nn.functional.cross_entropy # loss采用交叉熵损失def forward(self, x, y=None):if self.use_bert:# 输入x为[batch_size, seq_len]# bert返回的结果是 (sequence_output, pooler_output)# sequence_output:batch_size, max_len, hidden_size# pooler_output:batch_size, hidden_sizex = self.encoder(x)[0]else:x = self.emb(x)x = self.encoder(x)# 判断x是否是tupleif isinstance(x, tuple):x = x[0]# 池化层if self.pooling_style == "max":# shape[1]代表列数,shape是行和列数构成的元组self.pooling_style = nn.MaxPool1d(x.shape[1])elif self.pooling_style == "avg":self.pooling_style = nn.AvgPool1d(x.shape[1])x = self.pooling_style(x.transpose(1, 2)).squeeze()y_pred = self.classify(x)if y is not None:return self.loss(y_pred, y.squeeze())else:return y_pred# 定义孪生网络 (计算两个句子之间的相似度)
class SiameseNetwork(nn.Module):def __init__(self, config):super(SiameseNetwork, self).__init__()self.sentence_encoder = TorchModel(config)# 使用的是cos计算# self.loss = nn.CosineEmbeddingLoss()# 使用triplet_lossself.triplet_loss = self.cosine_triplet_loss# 计算余弦距离 1-cos(a,b)# cos=1时两个向量相同,余弦距离为0;cos=0时,两个向量正交,余弦距离为1def cosine_distance(self, tensor1, tensor2):tensor1 = torch.nn.functional.normalize(tensor1, dim=-1)tensor2 = torch.nn.functional.normalize(tensor2, dim=-1)cosine = torch.sum(torch.mul(tensor1, tensor2), axis=-1)return 1 - cosine# 3个样本 2个为一类 另一个一类 计算triplet lossdef cosine_triplet_loss(self, a, p, n, margin=None):ap = self.cosine_distance(a, p)an = self.cosine_distance(a, n)if margin is None:diff = ap - an + 0.1else:diff = ap - an + margin.squeeze()return torch.mean(diff[diff.gt(0)]) # greater than# 使用triplet_lossdef forward(self, sentence1, sentence2=None, sentence3=None, margin=None):vector1 = self.sentence_encoder(sentence1)# 同时传入3 个样本if sentence2 is None:if sentence3 is None:return vector1# 计算余弦距离else:vector3 = self.sentence_encoder(sentence3)return self.cosine_distance(vector1, vector3)else:vector2 = self.sentence_encoder(sentence2)if sentence3 is None:return self.cosine_distance(vector1, vector2)else:vector3 = self.sentence_encoder(sentence3)return self.triplet_loss(vector1, vector2, vector3, margin)# CosineEmbeddingLoss# def forward(self,sentence1, sentence2=None, target=None):# # 同时传入两个句子# if sentence2 is not None:# vector1 = self.sentence_encoder(sentence1) # vec:(batch_size, hidden_size)# vector2 = self.sentence_encoder(sentence2)# # 如果有标签,则计算loss# if target is not None:# return self.loss(vector1, vector2, target.squeeze())# # 如果无标签,计算余弦距离# else:# return self.cosine_distance(vector1, vector2)# # 单独传入一个句子时,认为正在使用向量化能力# else:# return self.sentence_encoder(sentence1)# 优化器的选择
def choose_optimizer(config, model):optimizer = config["optimizer"]learning_rate = config["lr"]if optimizer == "adam":return Adam(model.parameters(), lr=learning_rate)elif optimizer == "sgd":return SGD(model.parameters(), lr=learning_rate)# 定义CNN模型
class CNN(nn.Module):def __init__(self, config):super(CNN, self).__init__()hidden_size = config["hidden_size"]kernel_size = config["kernel_size"]pad = int((kernel_size - 1) / 2)self.cnn = nn.Conv1d(hidden_size, hidden_size, kernel_size, bias=False, padding=pad)def forward(self, x): # x : (batch_size, max_len, embeding_size)return self.cnn(x.transpose(1, 2)).transpose(1, 2)# 定义GatedCNN模型
class GatedCNN(nn.Module):def __init__(self, config):super(GatedCNN, self).__init__()self.cnn = CNN(config)self.gate = CNN(config)# 定义前向传播函数 比普通cnn多了一次sigmoid 然后互相卷积def forward(self, x):a = self.cnn(x)b = self.gate(x)b = torch.sigmoid(b)return torch.mul(a, b)# 定义BERT-LSTM模型
class BertLSTM(nn.Module):def __init__(self, config):super(BertLSTM, self).__init__()self.bert = BertModel.from_pretrained(config["bert_model_path"], return_dict=False)self.rnn = nn.LSTM(self.bert.config.hidden_size, self.bert.config.hidden_size, batch_first=True)def forward(self, x):x = self.bert(x)[0]x, _ = self.rnn(x)return xif __name__ == "__main__":from config import ConfigConfig["vocab_size"] = 10Config["max_length"] = 4model = SiameseNetwork(Config)s1 = torch.LongTensor([[1, 2, 3, 0], [2, 2, 0, 0]])s2 = torch.LongTensor([[1, 2, 3, 4], [3, 2, 3, 4]])l = torch.LongTensor([[1], [0]])y = model(s1, s2, l)print(y)