当前位置: 首页 > news >正文

Python深度学习基于Tensorflow(1)Numpy基础

文章目录

        • 数据转换和数据生成
        • 存取数据
        • 数据变形和合并
        • 算数计算
        • 广播机制
        • 使用Numpy实现回归实例

numpy的重要性不言而喻,一般不涉及到GPU/TPU计算,都是用numpy,常见的np就是这个玩意。其特点就是快!其实如果不涉及到深度学习,还有一个库是很重要的,scipy,集成了很多的东西。

安装和导入如下:

# pip 安装方式
pip install numpy# conda 安装方式
conda install numpy# 导入
import numpy as np

numpy对象一般有三个属性:ndarray.ndim、ndarray.shape、ndarray.dtype。分别表示数据维度,数据形状,数据类型

数据转换和数据生成

将已有数据转化为numpy类型很简单,一般来说直接numpy.array一下就好

lst = [0.30406244, 0.06466714, 0.44950621]  
array = np.array(lst)

这里无论是字符串什么东西的都可以直接丢进去,这里提一下读取图片文件,需要涉及到其他的库,常见的有PIL、OpenCV

# PIL
from PIL import Image
import numpy as npim = np.array(Image.open('图片路径'))# OpenCV
import cv2
im = cv2.imread('图片路径')

这两种方式都可以读取图片文件,cv2可以直接的转化为numpy类型数据

然后就是数据生成,分为随机生成和有序生成,分为random模块以及arange、linspace模块

这里先介绍一下random

# 设置随机种子
np.random.seed(42)# 生成矩阵形状为4*4,值在0-1之间的随机数
np.random.random(size=(4,4))# 生成矩阵形状为4*4,值在low和high之间的随机整数
np.random.randint(low=0, high=1, size=(4,4))# 生成矩阵形状为4*4,值在low和high之间满足均匀分布的随机数
np.random.uniform(low=0, high=1, size=(4,4))# 生成矩阵形状为4*4,值在low和high之间满足正态分布的随机数
np.random.normal(loc=0, scale=1, size=(4,4))

这里要注意:正态分布的loc表示的是 μ \mu μ , scale表示的是 σ \sigma σ

接下来是arange和linspace

np.arange(start, stop, step)np.linspace(start, stop, num)

arange和linspace的区别就是step和num的区别,其中step是步长,num是数量,分别表示根据步长生成有序数据和数量生成有序数据。

存取数据

numpy和list一样,可以指定行和列来对数据进行切片,但是不同的是可以利用True和False来对数据进行筛选

mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)  
res = s[(s>0) & (s<1)]

这样可以提取在0-1范围上的所有数据,这里要注意的是,条件必须要带上括号

数据变形和合并

首先是数据形状的修改

arr = np.arange(10)## reshape 修改np对象维度,不修改矩阵本身
arr = arr.reshape(2,5)## resize 修改np对象维度,同时修改矩阵本身
arr.resize(2,5)## T 转置
arr.T## ravel 把np对象展平,变成一维 C表示行优先,F表示列优先
arr.ravel('C')## flatten 把np对象展平,变成一维 C表示行优先,F表示列优先
arr.flatten(order="C")## squeeze 对维数为1的维度进行降维,即清除掉维数为1的维度
arr.squeeze()## 拓展维度
np.expand_dims(arr, axis=-1)
arr[:, np.newaxis]## transpose 对高维矩阵进行轴对换
arr.transpose(1,2,0)

数据合并

lst = [1, 2, 3]
lst_ = [3, 4, 5]## append 拼接数组,维度不能发生变化
res = np.append(lst,lst_)## concatenate 拼接数组,维度不能发生变化,内存占用要比append低, 推荐使用
lst = np.array([1, 2, 3])  
lst_ = np.array([3, 4, 5])  
res = np.concatenate((lst, lst_), axis=0)## stack hstack vstack dstack 堆叠数组
lst = np.array([1, 2, 3])  
lst_ = np.array([3, 4, 5])  
res = np.stack((lst, lst_), axis=1) # 对应dstack 沿着第三维
res = np.stack((lst, lst_), axis=0) # 对应vstack 沿着列堆叠
res = np.hstack((lst, lst_)) # 沿着行堆叠
算数计算

numpy的算术计算相比与math速度大大提升

sqrtsin,cosabsdotlog,log10,log2expcumsum, cumproductsummeanmedianstdvarcorrcoef

广播机制
  • 让所有输入数组都向其中shape最长的数组看起,shape中不足的部分都通过在前面加1补齐;
  • 输出数组的shape是输入数组shape的各个轴上的最大值;
  • 如果输入数组的某个轴和输出数组的对应轴的长度相同或者长度为1时,则可以调整,否则将会出错;
  • 当输入数组的某个轴长度为1时,沿着此轴运算时都用(或复制)此轴上的第一组值;
使用Numpy实现回归实例

假设目标函数如下:

y = 3 x 2 + 2 x + 1 y=3x^2+2x+1 y=3x2+2x+1

图像如下:
![[Pasted image 20240505194741.png]]

假设知道最高项为3,设函数为: y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c

import numpy as np  
import matplotlib.pyplot as plt  np.random.seed(42)  x = np.linspace(-10, 10, 50)  
y = 3 * np.power(x, 2) + 2 * x + 1  a = np.random.random(size=(1, 1))  
b = np.random.random(size=(1, 1))  
c = np.random.random(size=(1, 1))  def get_predict(x):  global a, b, c  res = (a * np.power(x, 2) + b * x + c).flatten()  return res  def get_loss(y, y_pred):  return np.mean(np.square(y - y_pred))  def grad_param(y, y_pred, lr=1e-4):  global a, b, c  a_grad = 2 * np.mean((y_pred - y) * np.power(x, 2))  b_grad = 2 * np.mean((y_pred - y) * np.power(x, 1))  c_grad = 2 * np.mean(y_pred - y)  a -= lr * a_grad  b -= lr * b_grad  b -= lr * c_grad  return None  def train_one_peoch(x, y):  y_pred = get_predict(x)  loss = np.mean(get_loss(y, y_pred))  grad_param(y, y_pred)  return loss  def main():  loss_lst = []  for i in range(100):  loss = train_one_peoch(x, y)  loss_lst.append(loss)  print("第", i + 1, "次", "训练loss:", loss)  plt.plot(loss_lst)  plt.show()  if __name__ == "__main__":  main()

得到训练后的损失如下:

![[Pasted image 20240505201747.png]]

http://www.lryc.cn/news/346945.html

相关文章:

  • 体验GM CHM Reader Pro,享受高效阅读
  • 校园网拨号上网环境下多开虚拟机,实现宿主机与虚拟机互通,并访问外部网络
  • cpu常用命令
  • Vue3实战笔记(06)--- Axios 基本用法
  • 使用单片机在图形点阵LCD上绘制波形图
  • 生信人写程序1. Perl语言模板及配置
  • 【Android】Kotlin学习之数据容器 -- 集合
  • 超详细 springboot 整合 Mock 进行单元测试!本文带你搞清楚!
  • 国产操作系统下Chrome的命令行使用 _ 统信 _ 麒麟
  • linux性能监控之slabtop
  • Allure 在 Python 中的安装与使用
  • python实现动态时钟功能
  • QueryPerformanceCounter实现高精度uS(微妙)延时
  • Logstash详解
  • QT设计模式:适配器模式
  • 开发规范相关
  • C++ 容器(五)——Set操作
  • 【数字IC设计】芯片设计中的RDC
  • spark history server异常
  • 一个优秀 Maven 项目,各 Model 间最佳继承设计方案
  • MATLAB概述
  • Redis5.0的Stream数据结构
  • 避坑指南!RK3588香橙派yolov5生成RKNN模型!
  • 算法学习笔记(Nim游戏)
  • 第13节 第二种shellcode编写实战(2)
  • 【QuikGraph】C#调用第三方库实现迪杰斯特拉(Dijkstra)算法功能
  • 查看ubuntu当前路径的剩余存储空间
  • 利用预训练模型和迁移学习打造智能狗门
  • 常用Linux命令详细总结
  • 基于SpringBoot的竹宣非遗宣传网站