当前位置: 首页 > news >正文

Pytorch常用的函数(九)torch.gather()用法

Pytorch常用的函数(九)torch.gather()用法

torch.gather() 就是在指定维度上收集value。

torch.gather() 的必填也是最常用的参数有三个,下面引用官方解释:

  • input (Tensor) – the source tensor
  • dim (int) – the axis along which to index
  • index (LongTensor) – the indices of elements to gather

一句话概括 gather 操作就是:根据 index ,在 inputdim 维度上收集 value

1、举例直观理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、我们有index_tensor如下
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	# 3、我们通过torch.gather()函数获取out_tensor
>>> out_tensor = torch.gather(input_tensor, dim=1, index=index_tensor)
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])

我们以out_tensor中[0,1,0]=8为例,解释下如何利用dim和index,从input_tensor中获得8。

在这里插入图片描述

根据上图,我们很直观的了解根据 index ,在 inputdim 维度上收集 value的过程。

  • 假设 inputindex 均为三维数组,那么输出 tensor 每个位置的索引是列表 [i, j, k] ,正常来说我们直接取 input[i, j, k] 作为 输出 tensor 对应位置的值即可;
  • 但是由于 dim 的存在以及 input.shape 可能不等于 index.shape ,所以直接取值可能就会报错 ;
  • 所以我们是将索引列表的相应位置替换为 dim ,再去 input 取值。在上面示例中,由于dim=1,那么我们就替换索引列表第1个值,即[i,dim,k],因此由原来的[0,1,0]替换为[0,2,0]后,再去input_tensor中取值。
  • pytorch官方文档的写法如下,同一个意思。
out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

2、反推法再理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、假设我们要得到out_tensor如下
>>> out_tensor
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])# 3、如何知道dim 和 index_tensor呢? 
# 首先,我们要记住:out_tensor的shape = index_tensor的shape# 从 output_tensor 的第一个位置开始:
# 此时[i, j, k]一样,看不出来 dim 应该是多少
output_tensor[0, 0, :] = input_tensor[0, 0, :] = 0
# 同理可知,此时index都为0
output_tensor[0, 0, 1] = input_tensor[0, 0, 1] = 1
output_tensor[0, 0, 2] = input_tensor[0, 0, 2] = 2
output_tensor[0, 0, 3] = input_tensor[0, 0, 3] = 3# 我们从下一行的第一个位置开始:
# 这里我们看到维度 1 发生了变化,1 变成了 2,所以 dim 应该是 1,而 index 应为 2
output_tensor[0, 1, 0] = input_tensor[0, 2, 0] = 8
# 同理可知,此时index都为2
output_tensor[0, 1, 1] = input_tensor[0, 2, 1] = 9
output_tensor[0, 1, 2] = input_tensor[0, 2, 2] = 10
output_tensor[0, 1, 3] = input_tensor[0, 2, 3] = 11# 根据上面推导我们易知dim=1,index_tensor为:
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	

3、实际案例

在大神何凯明MAE模型(Masked Autoencoders Are Scalable Vision Learners)源码中,多次使用了torch.gather() 函数。

  • 论文链接:https://arxiv.org/pdf/2111.06377
  • 官方源码:https://github.com/facebookresearch/mae

在MAE中根据预设的掩码比例(paper 中提倡的是 75%),使用服从均匀分布的随机采样策略采样一部分 tokens 送给 Encoder,另一部分mask 掉。采样25%作为unmasked tokens过程中,使用了torch.gather() 函数。

# models_mae.pyimport torchdef random_masking(x, mask_ratio=0.75):"""Perform per-sample random masking by per-sample shuffling.Per-sample shuffling is done by argsort random noise.x: [N, L, D], sequence"""N, L, D = x.shape  # batch, length, dimlen_keep = int(L * (1 - mask_ratio))  # 计算unmasked的片数# 利用0-1均匀分布进行采样,避免潜在的【中心归纳偏好】noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]# sort noise for each sample【核心代码】ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is removeids_restore = torch.argsort(ids_shuffle, dim=1)# keep the first subsetids_keep = ids_shuffle[:, :len_keep]# 利用torch.gather()从源tensor中获取25%的unmasked tokensx_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))# generate the binary mask: 0 is keep, 1 is removemask = torch.ones([N, L], device=x.device)mask[:, :len_keep] = 0# unshuffle to get the binary maskmask = torch.gather(mask, dim=1, index=ids_restore)return x_masked, mask, ids_restoreif __name__ == '__main__':x = torch.arange(64).reshape(1, 16, 4)random_masking(x)
# x模拟一张图片经过patch_embedding后的序列
# x相当于input_tensor
# 16是patch数量,实际上一般为(img_size/patch_size)^2 = (224 / 16)^2 = 14*14=196
# 4是一个patch中像素个数,这里只是模拟,实际上一般为(in_chans * patch_size * patch_size = 3*16*16 = 768)
>>> x = torch.arange(64).reshape(1, 16, 4) 
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19], # 4[20, 21, 22, 23],[24, 25, 26, 27],[28, 29, 30, 31],[32, 33, 34, 35],[36, 37, 38, 39],[40, 41, 42, 43], # 10[44, 45, 46, 47],[48, 49, 50, 51], # 12[52, 53, 54, 55], # 13[56, 57, 58, 59],[60, 61, 62, 63]]])
# dim=1, index相当于index_tensor
>>> index
tensor([[[10, 10, 10, 10],[12, 12, 12, 12],[ 4,  4,  4,  4],[13, 13, 13, 13]]])# x_masked(从源tensor即x中,随机获取25%(4个patch)的unmasked tokens)     
>>> x_masked相当于out_tensor
tensor([[[40, 41, 42, 43],[48, 49, 50, 51],[16, 17, 18, 19],[52, 53, 54, 55]]])
http://www.lryc.cn/news/346663.html

相关文章:

  • 用爬虫解决问题
  • 机器学习-有监督学习
  • 【详细介绍下Visual Studio】
  • 【Golang】实现 Excel 文件下载功能
  • 设计模式2——原则篇:依赖倒转原则、单一职责原则、合成|聚合复用原则、开放-封闭原则、迪米特法则、里氏代换原则
  • 深入探讨布隆过滤器算法:高效的数据查找与去重工具
  • 基于STC12C5A60S2系列1T 8051单片机实现一主单片机与一从单片机进行双向串口通信功能
  • ubuntu18.04安装docker容器
  • 202212青少年软件编程(Python)等级考试试卷(二级)
  • 单播、组播、广播
  • 吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14
  • 笔试强训未触及题目(个人向)
  • 【YOLO改进】换遍MMDET主干网络之EfficientNet(基于MMYOLO)
  • uniapp下拉选择组件
  • 高斯数据库创建函数的语法
  • 【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟
  • ubuntu删除opencv
  • K8s源码分析(二)-K8s调度队列介绍
  • OpenGL ES 面试高频知识点(二)
  • 2024第十六届“中国电机工程学会杯”数学建模A题B题思路分析
  • 面向对象的三大特性:封装、继承、多态
  • 目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(中)
  • 前端GET请求下载后端返回数据流文件,并且处理window.open方法跳转白屏方法
  • SD321放大器3V输入电流电压保护二极管25C电源电流
  • geoserver SQL注入、Think PHP5 SQL注入、spring命令注入
  • scrapy的入门
  • 大数据Scala教程从入门到精通第七篇:Scala在IDEA中编写Hello World
  • 设计模式之数据访问对象模式
  • Spring aop切面编程
  • 如何更好地使用Kafka? - 事先预防篇