当前位置: 首页 > news >正文

C++ 概览并发

并发

资源管理

资源

  • 程序中符合先获取后释放(显式或隐式)规律的东西,比如内存、锁、套接字、线程句柄和文件句柄等。
  • RAII: (Resource Acquisition Is Initialization),也称为“资源获取就是初始化”,是C++语言的一种管理资源、避免泄漏的惯用法。
unique_ptr & shared_ptr
  • unique_ptr 是一个独立对象或者是数组的句柄,unique_ptr 通过移动操作使得简单高效
  • shared_ptr 很多方面和unique_ptr 相似, 唯一区别是shared_ptr 通过拷贝操作而非移动操作。多个shared_ptr 共享该对象的所有权,只有当最后一个 shared_ptr 被销毁时,对象才被销毁。
  • shared_ptr 提供的垃圾回收机制需要慎重使用。 shared_ptr 使得对象的生命周期变得不那么容易掌控了,除非在一定程度上一定要使用共享所有权,否则别轻易使用shared_ptr
  • shared_ptr 没有指定哪个拥有者有权读写对象
  • 当我们使用函数返回集合的时候,不必使用指针,因为如果定义了移动语义, 在返回的时候会默认使用移动操作

并发

任务 和thread

  • 线程(thread)是任务在程序中的系统级表示。
  • thread 在 中定义
thread 的使用方法
#include <iostream>
#include <thread>
#include <vector>
#include "config.h"// thead 的使用
// 函数的参数这里必须是const, 否则会报thread:120:44: error: static assertion failed: std::thread arguments must be invocable after conversion to rvalues
// 在多线程中使用io 操作,需要考虑线程安全,打印出来的字符服务保证输出内容的顺序
void f(const std::vector<double>& v) {std::cout<< "function f" << std::endl;
}
// 通过res 指针返回thread 的执行结果,不美观的方法
// 不推荐使用此方法,因为无法掌控res 什么时候写入了,一般用消息队列,或者使用condition 、promise等方式来实现返回结果
void f2(const std::vector<double>& v, double* res) {}struct F {std::vector<double> & v;F(std::vector<double>& vv):v{vv} {}/* 如果不使用调用运算符重载, 会编译报错: hread:120:44: error: static assertion failed: std::thread arguments must be invocable after conversion to rvalues*/void operator()() {   // 调用运算符重载std::cout << "struct F  operator" << std::endl;}};class Foo
{
public:void bar(){for (int i = 0; i < 5; ++i){std::cout << "正在执行线程3\n";++n;std::this_thread::sleep_for(std::chrono::milliseconds(10));}}int n = 0;
};int main(int argc, char **argv) {std::vector<double> some_vec {1,2,3,4,5,6};std::vector<double> vec2{10,11,12,13};std::thread t1{f, some_vec}; // 在t1 的线程里面执行函数f, 参数是some_vecstd::thread t2{F{vec2}};	// 在t2 的县城里面执行函数 F 的调用运算符, 参数是vec2double res;std::thread t3(f2, some_vec, &res);Foo f;std::thread t4(&Foo::bar, &f); // t5 在对象 f 上运行 foo::bar()t1.join();t2.join();return 0;
}
  • thread 更多用法清参照cppreference
thread 共享数据
  • mutex // 访问数据排他处理
  • condition_variable 允许一个thread 等待另外一个thread
  • 代码示例
class Message {
private:int msgId;
public:Message(int id) : msgId(id){}int getId() { return msgId;}
};std::queue<Message> mMsgQueue;
std::condition_variable mCond;
std::mutex mMutex;void consumer() {while(true) {//std::cout << "wait mutex " <<  std::endl;std::unique_lock<std::mutex> lck{mMutex};//std::cout << "wait condition " <<  std::endl;//while(mCond.wait(lck))/*do nothing*/;mCond.wait(lck);//std::cout << "after wait condition " <<  std::endl;auto m = mMsgQueue.front();mMsgQueue.pop();std::cout << "get msg Id: " << m.getId() << std::endl;// lck.unlock();}
}void producer() {int index = 10;while(index > 0) {Message msg(index);std::unique_lock<std::mutex> lck{mMutex};mMsgQueue.push(msg);std::cout << "push msg Id: " << msg.getId() << std::endl;lck.unlock(); //(1)mCond.notify_all();//std::cout << "after notify all: " << msg.getId() << std::endl;//std::this_thread::sleep_for(std::chrono::milliseconds(20)); //(2)index--;}
}int main(int argc, char **argv) {std::thread t2(consumer);std::thread t1(producer);t1.join();t2.join();
}
  • 对于生产者-消费者模式,理想状态下,生产者生产一个,消费者就消费一个,但是实际并非如此

    • (1) 如果不主动调用lck.unlock(), lck 需要等到while(){} 进入下一个循环才会释放,所以无论是否加(), cosumer 线程得不到执行的契机(可能和平台有关)
    • (2) 对于加了(1) 而没有(2) 的场合while 很快执行到下一个循环,又立即执行到lck, 也会导致在producer 执行过程中,consumer 得不到执行
      执行效果大致如下:
      在这里插入图片描述
  • 而如果加了(1) 和(2)后:

    在这里插入图片描述

  • 对于consume 如上图的处理方式,获取一次锁只pop 一次数据,会因为producer notify 和consumer 的wait 不是时间上不是匹配出现而导致数据没有被全部读取出来,可以修改为如下方式:

  • 在获取到一次锁后,把消息队列中的消息全部处理掉

void consumer() {while(true) {//std::cout << "wait mutex " <<  std::endl;std::unique_lock<std::mutex> lck{mMutex};//std::cout << "wait condition " <<  std::endl;//while(mCond.wait(lck))/*do nothing*/;mCond.wait(lck);//std::cout << "after wait condition " <<  std::endl;while(!mMsgQueue.empty()) {auto m = mMsgQueue.front();mMsgQueue.pop();std::cout << "get msg Id: " << m.getId() << std::endl;}// lck.unlock();}
}

执行效果大致如下, 这样只是消费者不会立马消费掉生产者生产的数据,但是即使没有(1)(2)也不会导致消息得不到处理:
在这里插入图片描述

任务通信

  • c++ 中主要提供了以下三种,都定义在 头文件中。
    • future and promise 用来从一个独立线程上创建出的任务返回结果
    • packaged_task 是帮助启动义务以及链接返回结果的机制
    • async 以非常类似调用函数的方式启动一个任务
future and promis
  • 允许两个任务间传输直,而无须显示使用锁–“系统”高效地实现了这种传输。
    • 当一个任务需要向另一个任务传输这个值时,把它放入promise。
    • c++ 实现会出现在对应的future 中。
    • 使用future 的get()函数,如果值还未准备好,线程会阻塞直至值准备好。如果get( )无法计算出来,get()会抛一个异常(系统或者从get() 得到数据的任务)
    • promise 的作用主要为future的get() 提供放置 操作(set_value()) 和set_exception().
#include <iostream>
#include <thread>
#include <future>
#include <functional>
void work (std::promise<int>& px) {try {px.set_value(11);} catch (...) {px.set_exception(std::current_exception());}
}void result (std::future<int>& res) {try {int result = res.get();std::cout<< " recieve the result: " << result << std::endl;} catch(...) {//std::cout<<"exception"<< std::current_exception() << std::endl;}
}
int main(int argc, char **argv) {std::promise<int> pro;std::future<int> fut = pro.get_future(); //binding the future and the promisestd::thread t1(work, std::ref(pro));std::thread t2(result, std::ref(fut));t1.join();t2.join();return 0;
}
  • 可以看到使用步骤如下:

    • 声明promise
    • 定义future,并且绑定promise 和future, 二者的模板类型必须一致(很好理解,provise 设定的就是传给future 的)
    • 使用promise 的set_value()或者set_exception() 传递值
    • 使用future 的get() 函数接收值(注意get()是阻塞的)
  • 这里使用了std::ref std::ref的使用场景:

    • 算法传递可调用对象,而这些对象可能需要引用传递。
    • 在多线程之间共享数据,但有希望通过引用传递数据而不是复制。
    • std::ref可以使函数接受任何类型的引用而不仅仅是特定类型
packaged_task
  • packaged_task 简化了任务连接future & promise.
  • (TODO)
http://www.lryc.cn/news/345056.html

相关文章:

  • 04-19 周四 GitHub CI 方案设计
  • java日常选择题
  • 安卓串口通訊三
  • 嵌入式交叉编译:Unable to find arm_neon.h
  • Linux下工具tc详细讲解及限制IP和端口实例
  • Java | Leetcode Java题解之第73题矩阵置零
  • MySQL#MySql表的操作
  • git修改版本发布时间
  • 【NodeMCU实时天气时钟温湿度项目 1】连接点亮SPI-TFT屏幕和UI布局设计
  • 国内首发 | CSA大中华区启动《AI安全产业图谱(2024)》调研
  • web页面与原生android通信,调用原生android方法
  • Linux的编译器
  • redis--安装
  • 魔法程序员的奥妙指南:Java基本语法
  • SpringMVC传递参数
  • 【Scala---04】函数式编程 『 函数 vs 方法 | 函数至简原则 | 函数式编程』
  • [华为OD] B卷 树状结构查询 200
  • 基于机器学习的学生学习行为自主评价设计与实现
  • toml与json联系对比
  • (已解决)org.springframework.amqp.rabbit.support.ListenerExecutionFailedException
  • 基于FPGA的数字信号处理(9)--定点数据的两种溢出处理模式:饱和(Saturate)和绕回(Wrap)
  • 基于STM32的宠物箱温度湿度监控系统毕业设计
  • Linux sudo 指令
  • 【NumPy数组】:深入了解numpy.linspace()函数
  • 计算机网络实验二:交换机的基本配置与操作
  • 宏的优缺点?C++有哪些技术替代宏?(const)权限的平移、缩小
  • 2024数维杯数学建模选题建议及各题思路来啦!
  • centos的常用命令
  • 【Android】使用Handler实现一个定时器
  • Java | Leetcode Java题解之第80题删除有序数组中的重复项II