当前位置: 首页 > news >正文

数据结构===堆

文章目录

  • 概要
    • 2条件
    • 大顶堆
    • 小顶堆
  • 堆的实现
    • 插入元素
    • 删除堆顶元素
  • 堆代码
  • 小结

概要

堆,有趣的数据结构。

那么,如何实现一个堆呢?

堆,有哪些重点:

  1. 满足2条件
  2. 大顶堆
  3. 小顶堆

2条件

2条件:

  1. 堆是一个完全二叉树
  2. 堆中的每个节点的值都必须大于等于或小于等于其树中每个节点的值

堆要满足这2个条件,重点。即使后边插入数据,或者删除数据之后,还是要满足这2个条件来做调整。

大顶堆

特点:
每个节点的值都大于等于子树中每个节点值的堆。

小顶堆

特点:
每个节点的值都小于等于子树中每个节点值的堆。

堆的实现

实现一个堆,重要的操作:插入元素和删除堆顶元素

插入元素

堆化:顺着节点所在的路径,向上或者向下,对比,然后交换。
来看下插入的代码:

public class Heap {private int[] a; // 数组,从下标1开始存储数据private int n;  // 堆可以存储的最大数据个数private int count; // 堆中已经存储的数据个数public Heap(int capacity) {a = new int[capacity + 1];n = capacity;count = 0;}public void insert(int data) {if (count >= n) return; // 堆满了++count;a[count] = data;int i = count;while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化swap(a, i, i/2); i = i/2;}}}

删除堆顶元素

由大顶堆和小顶堆的定义可知,堆顶元素要么最大,要么最小;

public void removeMax() {if (count == 0) return -1; // 堆中没有数据a[1] = a[count];--count;heapify(a, count, 1);
}private void heapify(int[] a, int n, int i) { // 自上往下堆化while (true) {int maxPos = i;if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;if (maxPos == i) break;swap(a, i, maxPos);i = maxPos;}
}

堆代码

来看个完整的代码吧,这里给python的。如下:

import sys 
class BinaryHeap:def __init__(self, capacity):self.capacity = capacityself.size = 0self.Heap = [0]*(self.capacity + 1)self.Heap[0] = -1 * sys.maxsizeself.FRONT = 1def parent(self, pos):return pos//2def leftChild(self, pos):return 2 * pos       def rightChild(self, pos):return (2 * pos) + 1def isLeaf(self, pos):if pos >= (self.size//2) and pos <= self.size:return Truereturn Falsedef swap(self, fpos, spos):self.Heap[fpos], self.Heap[spos] = self.Heap[spos], self.Heap[fpos]def heapifyDown(self, pos):if not self.isLeaf(pos):if (self.Heap[pos] > self.Heap[self.leftChild(pos)] or self.Heap[pos] > self.Heap[self.rightChild(pos)]):if self.Heap[self.leftChild(pos)] < self.Heap[self.rightChild(pos)]:self.swap(pos, self.leftChild(pos))self.heapifyDown(self.leftChild(pos))else:self.swap(pos, self.rightChild(pos))self.heapifyDown(self.rightChild(pos))def insert(self, element):if self.size >= self.capacity :returnself.size+= 1self.Heap[self.size] = elementcurrent = self.sizewhile self.Heap[current] < self.Heap[self.parent(current)]:self.swap(current, self.parent(current))current = self.parent(current)def minHeap(self):for pos in range(self.size//2, 0, -1):self.heapifyDown(pos)def delete(self):popped = self.Heap[self.FRONT]self.Heap[self.FRONT] = self.Heap[self.size]self.size-= 1self.heapifyDown(self.FRONT)return poppeddef isEmpty(self):return self.size == 0def isFull(self):return self.size == self.capacity

小结

关于堆,就这么多吧

堆的概念跟推理还是相对来说简单的。比红黑树简单点。其实都一样的,只要按照那些规则,一条一条对着去理解;应该还好。

http://www.lryc.cn/news/342142.html

相关文章:

  • AAA、RADIUS、TACACS、Diameter协议介绍
  • Nacos高频面试题及参考答案(2万字长文)
  • CMakeLists.txt语法规则:条件判断中表达式说明四
  • Hive概述
  • buuctf-misc-33.[BJDCTF2020]藏藏藏1
  • golang 基础知识细节回顾
  • 递归陷阱七例
  • 【3D基础】坐标转换——地理坐标投影到平面
  • 颈椎锻炼方式
  • 测试环境搭建:JDK+Tomcat+Mysql+Redis
  • (delphi11最新学习资料) Object Pascal 学习笔记---第11章第1节(混合引用中的错误)
  • 代码随想录算法训练营第三天 | 链表理论基础,203.移除链表元素,707.设计链表,206.反转链表
  • 如何利用仪表构造InfiniBand流量在数据中心测试中的应用
  • Kubernetes 文档 / 概念 / Kubernetes 架构 / 节点
  • ICode国际青少年编程竞赛- Python-1级训练场-for循环练习
  • Flutter分模块开发、模块可单独启动、包含Provider
  • Element-UI快速入门:构建优雅的Vue.js应用界面
  • Flutter 中的 @immutable:深入解析与最佳实践
  • Pandas数据可视化 - Matplotlib、Seaborn、Pandas Plot、Plotly
  • 人工智能的发展将如何重塑网络安全
  • Prometheus+Grafana多方位监控
  • 使用Docker安装Redis
  • React 之 Effect与事件(event)(八)
  • 网卡的了解
  • SSM框架目录
  • MATLAB实现杜拉德公式和凯夫公式的计算固液混合料浆临界流速
  • Oceanbase all-in-one单机版部署,通过MySQL客户端连接OB租户,DBEAVER 客户端连接MySQL租户。
  • 【DevOps】玩转 Google Cloud:项目切换与 K8s 集群访问
  • 大模型_DISC-MedLLM基于Baichuan-13B-Base医疗健康对话
  • 开源模型 Prometheus 2 能够评估其他语言模型,其效果几乎与 GPT-4 相当