当前位置: 首页 > news >正文

Pytorch-张量形状操作

😆😆😆感谢大家的观看😆😆

🌹

reshape 函数

transpose 和 permute 函数

view 和 contigous 函数

squeeze 和 unsqueeze 函数


在搭建网络模型时,掌握对张量形状的操作是非常重要的,因为这直接影响到数据如何在网络各层之间传递和处理。网络层与层之间很多都是以不同的 shape 的方式进行表现和运算,我们需要掌握对张量形状的操作,以便能够更好处理网络各层之间的数据连接,确保数据能够顺利地在网络中流动,接下来我们看看几个常用的函数方法🌹

reshape 函数

💎reshape 函数可以在保证张量数据不变的前提下改变数据的维度,将其转换成指定的形状,在后面的神经网络学习时,会经常使用该函数来调节数据的形状,以适配不同网络层之间的数据传递。

import torch# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])
print("原始张量:")
print(tensor)
# (2,2)# 使用reshape函数修改张量形状
reshaped_tensor = tensor.reshape(1, 4)
print("修改后的张量:")
print(reshaped_tensor)
# (1,4)

当第二个参数为-1时,表示自动计算该维度的大小,以使得张量的元素总数不变,这样我们可以免去思考的时间。

import torch# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])
print("原始张量:")
print(tensor)# 使用reshape函数修改张量形状,第二个参数为-1
reshaped_tensor = tensor.reshape(1, -1)
print("修改后的张量:")
print(reshaped_tensor)原始张量:
tensor([[1, 2],[3, 4]])
修改后的张量:
tensor([[1, 2, 3, 4]])

transpose 和 permute 函数

💎transpose 函数可以实现交换张量形状的指定维度,permute 函数可以一次交换更多的维度

  • transposetranspose用于交换张量的两个维度。它并不改变张量中元素的数量,也不改变每个元素的值,只是改变了元素在张量中的排列顺序。在二维情况下,transpose相当于矩阵的转置,将行变为列,列变为行。在多维情况下,它会按照提供的轴(dimension)参数来重新排列维度。
  • reshapereshape则是改变张量的形状,而不改变任何特定的维度位置。你可以使用reshape将张量从一种形状变换到另一种形状,只要两个形状的元素总数相同。这个过程不涉及元素之间的交换,只是调整了元素在内存中的分布,以适应新的形状。在内部实现上,reshape通常通过修改张量的元数据(如shape和strides属性)来实现,而不需要重新排列数据本身。
  • 如果你需要保持张量中元素的相对位置不变,仅调整张量的维度顺序,那么应该使用transpose;如果你需要改变张量的整体形状而不关心维度的顺序,reshape会是正确的选择。

      
data = torch.tensor(np.random.randint(0, 10, [3, 4, 5]))
print('data shape:', data.size())交换1和2维度
new_data = torch.transpose(data, 1, 2)
print('data shape:', new_data.size())#将 data 的形状修改为 (4, 5, 3)
new_data = torch.transpose(data, 0, 1)
new_data = torch.transpose(new_data, 1, 2)
print('new_data shape:', new_data.size())# 使用 permute 函数将形状修改为 (4, 5, 3)
new_data = torch.permute(data, [1, 2, 0])
print('new_data shape:', new_data.size())# 结果
data shape: torch.Size([3, 4, 5])
data shape: torch.Size([3, 5, 4])
new_data shape: torch.Size([4, 5, 3])
new_data shape: torch.Size([4, 5, 3])

view 和 contigous 函数

💎view 函数也可以用于修改张量的形状,只能用于存储在整块内存中的张量。在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,如果张量存储在不连续的内存中,使用view函数会导致错误。在这种情况下,可以使用contiguous函数将张量复制到连续的内存中,然后再使用view函数进行形状修改。

import torch# 创建一个张量
tensor = torch.randn(2, 3, 4)# 使用view函数改变张量的形状
reshaped_tensor = tensor.view(6, 4)# 使用contiguous函数使张量在内存中连续存储
contiguous_tensor = tensor.contiguous()

使用 transpose 函数修改形状或者 permute 函数的处理之后,就无法使用 view 函数进行形状操作,这时data.contiguous().view(2, 3)即可。

squeeze 和 unsqueeze 函数

💎squeeze函数用于移除张量中维度为1的轴,而unsqueeze函数则用于在指定位置插入一个新的维度

torch.squeeze(input, dim=None)

  • input: 输入张量。
  • dim: 可选参数,指定要移除的维度。如果不指定,则移除所有大小为1的维度。
import torchA = torch.tensor([[[1, 2, 3], [4, 5, 6]]])
print(A.shape) # 输出:torch.Size([1, 2, 3])
B = torch.squeeze(A)
print(B.shape) # 输出:torch.Size([2, 3])
C = torch.squeeze(A, 0)
print(C.shape) # 输出:torch.Size([2, 3])
D = torch.squeeze(A, 1)
print(D.shape) # 输出:torch.Size([1, 3])

 torch.unsqueeze(input, dim)

  • input: 输入张量。
  • dim: 指定要插入新维度的位置。
import torchA = torch.tensor([1, 2, 3])
print(A.shape) # 输出:torch.Size([3])
B = torch.unsqueeze(A, 0)
print(B.shape) # 输出:torch.Size([1, 3])
C = torch.unsqueeze(A, 1)
print(C.shape) # 输出:torch.Size([3, 1])

🎰小结

  1. reshape函数可以在保证张量不变的前提下改变数据维度。
  2. transpose(转置)函数可以实现交换张量形状的指定维度,permute可以一次交换更多维度。
  3. view函数也可以用于修改张量的形状,但是他要求被转换的张量内存必须连续,所以一般配合contiguous(连续的)函数使用。
  4. squeeze(挤压)函数和unsqueeze函数可以用来增加或者减少维度。
http://www.lryc.cn/news/339831.html

相关文章:

  • k8s的service为什么不能ping通?——所有的service都不能ping通吗
  • [Linux] 权限控制命令 chmod、chown和chgrp
  • RNN知识体系构筑:详尽阐述其理论基础、技术架构及其在处理序列数据挑战中的创新应用
  • LeetCode 1702.修改后的最大二进制字符串:脑筋急转弯(构造,贪心)
  • 图片像素轻松缩放自如,支持批量将多张jpg图片像素放大,高效掌握图片的像素
  • FILE类与IO流
  • 基于java+springboot+vue实现的智慧党建系统(文末源码+Lw+ppt)23-58
  • HiveSQL基础Day03
  • houdini 学习过程
  • Angular学习第四天--问题记录及父子组件问题
  • 如何拿捏2024年的B端设计?(附工具推荐)
  • 【蓝桥杯】2024年第15届真题题目
  • LLM生成模型在生物单细胞single cell的应用:scGPT
  • 力扣15题. 三数之和
  • 项目经理好还是产品经理好?入行必读!
  • Elastic安装后 postman对elasticsearch进行测试
  • JPA (Java Persistence API)
  • 实战要求下,如何做好资产安全信息管理
  • [matlab]matcaffe在matlab2023a安装和配置过程
  • 【word2pdf】Springboot word转pdf(自学使用)
  • 3_2Linux中内核级加强型火墙的管理
  • PCB工艺规范及PCB设计安规原则
  • Qt for Android 开发环境
  • 【题解】BC64 牛牛的快递(C++)
  • C++(运算符重载+赋值拷贝函数+日期类的书写)
  • 【介绍下负载均衡原理及算法】
  • CESS 受邀出席香港Web3.0标准化协会第一次理事会议,共商行业未来
  • MySQL 8.0.19安装教程(windows 64位)
  • 探索AI提示词网站:助力内容创作与AI对话
  • AdaBoost 算法