当前位置: 首页 > news >正文

4.2、ipex-llm(原bigdl-llm)进行语音识别

ipex-llm环境配置及模型下载
由于需要处理音频文件,还需要安装用于音频分析的 librosa 软件包。

pip install librosa

下载音频文件

!wget -O audio_en.mp3 https://datasets-server.huggingface.co/assets/common_voice/--/en/train/5/audio/audio.mp3
!wget -O audio_zh.mp3 https://datasets-server.huggingface.co/assets/common_voice/--/zh-CN/train/2/audio/audio.mp3

播放下载完成的音频:

import IPythonIPython.display.display(IPython.display.Audio("audio_en.mp3"))
IPython.display.display(IPython.display.Audio("audio_zh.mp3"))

1、加载预训练好的 Whisper 模型

加载一个经过预训练的 Whisper 模型,例如 whisper-medium 。OpenAI 发布了各种尺寸的预训练 Whisper 模型(包括 whisper-small、whisper-tiny 等),您可以选择最符合您要求的模型。
只需在 ipex-llm 中使用单行 transformers-style API,即可加载具有 INT4 优化功能的 whisper-medium(通过指定 load_in_4bit=True),如下所示。请注意,对于 Whisper,我们使用了 AutoModelForSpeechSeq2Seq 类。

from ipex_llm.transformers import AutoModelForSpeechSeq2Seqmodel = AutoModelForSpeechSeq2Seq.from_pretrained(pretrained_model_name_or_path="openai/whisper-medium",load_in_4bit=True,trust_remote_code=True)

2、加载 Whisper Processor

无论是音频预处理还是将模型输出从标记转换为文本的后处理,我们都需要 Whisper Processor。您只需使用官方的 transformers API 加载 WhisperProcessor 即可:

from transformers import WhisperProcessorprocessor = WhisperProcessor.from_pretrained(pretrained_model_name_or_path="openai/whisper-medium")

3、转录英文音频

使用带有 INT4 优化功能的 IPEX-LLM 优化 Whisper 模型并加载 Whisper Processor 后,就可以开始通过模型推理转录音频了。
让我们从英语音频文件 audio_en.mp3 开始。在将其输入 Whisper Processor 之前,我们需要从原始语音波形中提取序列数据:

import librosadata_en, sample_rate_en = librosa.load("audio_en.mp3", sr=16000)

对于 whisper-medium,其 WhisperFeatureExtractor(WhisperProcessor 的一部分)默认使用
16,000Hz 采样率从音频中提取特征。关键的是要用模型的 WhisperFeatureExtractor
以采样率加载音频文件,以便精确识别。

然后,我们就可以根据序列数据转录音频文件,使用的方法与使用官方的 transformers API 完全相同:

import torch
import time# 定义任务类型
forced_decoder_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe")with torch.inference_mode():# 为 Whisper 模型提取输入特征input_features = processor(data_en, sampling_rate=sample_rate_en, return_tensors="pt").input_features# 为转录预测 token idst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()# 将 token id 解码为文本transcribe_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'English Transcription', '-'*20)print(transcribe_str)

forced_decoder_ids 为不同语言和任务(转录或翻译)定义上下文 token 。如果设置为 None,Whisper 将自动预测它们。

4、转录中文音频并翻译成英文

现在把目光转向中文音频 audio_zh.mp3。Whisper 可以转录多语言音频,并将其翻译成英文。这里唯一的区别是通过 forced_decoder_ids 来定义特定的上下文 token:

# 提取序列数据
data_zh, sample_rate_zh = librosa.load("audio_zh.mp3", sr=16000)# 定义中文转录任务
forced_decoder_ids = processor.get_decoder_prompt_ids(language="chinese", task="transcribe")with torch.inference_mode():input_features = processor(data_zh, sampling_rate=sample_rate_zh, return_tensors="pt").input_featuresst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()transcribe_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'Chinese Transcription', '-'*20)print(transcribe_str)# 定义中文转录以及翻译任务
forced_decoder_ids = processor.get_decoder_prompt_ids(language="chinese", task="translate")with torch.inference_mode():input_features = processor(data_zh, sampling_rate=sample_rate_zh, return_tensors="pt").input_featuresst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()translate_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'Chinese to English Translation', '-'*20)print(translate_str)
http://www.lryc.cn/news/338907.html

相关文章:

  • 上海亚商投顾:创业板指低开低走 黄金、家电股逆势大涨
  • AIGC革新浪潮:大语言模型如何优化企业运营
  • Golang基础-12
  • python递归统计文件夹下pdf文件的数量
  • Kafka 硬件和操作系统
  • Kolla-ansible部署OpenStack集群
  • SHARE 203S PRO:倾斜摄影相机在地灾救援中的应用
  • MATLAB算法实战应用案例精讲-【数模应用】中介效应分析(补充篇)(附R语言和python代码实现)
  • Day96:云上攻防-云原生篇Docker安全系统内核版本漏洞CDK自动利用容器逃逸
  • python botos s3 aws
  • python画神经网络图
  • Bash 编程精粹:从新手到高手的全面指南之逻辑控制
  • 自动化运维(三十)Ansible 实战之自定义插件
  • 实习僧网站的实习岗位信息分析
  • C语言中局部变量和全局变量是否可以重名?为什么?
  • 小程序中配置scss
  • ZYNQ-Vitis(SDK)裸机开发之(四)PS端MIO和EMIO的使用
  • 聊聊jvm中内存模型的坑
  • DevOps已死?2024年的DevOps将如何发展
  • appium控制手机一直从下往上滑动
  • 为什么光伏探勘测绘需要无人机?
  • day10 | 栈与队列 part-2 (Go) | 20 有效的括号、1047 删除字符串中的所有相邻重复项、150 逆波兰表达式求值
  • 深入解析Tomcat的工作流程
  • 【web网页制作】html+css旅游家乡山西主题网页制作(3页面)【附源码】
  • 系统参数指标:QPS、TPS、PV、UV等
  • 一入鸿蒙深似海,从此Spring是路人:鸿蒙开发面试题
  • 【Python】使用OPC UA创建数据服务器
  • JavaScript(六)-高级篇
  • 速盾:游戏cdn什么意思
  • 数据库-Redis(11)