当前位置: 首页 > news >正文

计算机视觉实验五——图像分割

计算机视觉实验五——图像分割

  • 一、实验目标
  • 二、实验内容
    • 1.了解图割操作,实现用户交互式分割,通过在一幅图像上为前景和背景提供一些标记或利用边界框选择一个包含前景的区域,实现分割
      • ①图片准备
      • ②代码
      • ③运行结果
      • ④代码说明
    • 2.采用聚类法实现图像的分割(K-means方法)
      • ①代码
      • ②运行结果
      • ③代码说明

一、实验目标

  1. 了解图割操作,实现用户交互式分割,通过在一幅图像上为前景和背景提供一些标记或利用边界框选择一个包含前景的区域,实现分割。
  2. 采用聚类法实现图像的分割(K-means方法)。

二、实验内容

1.了解图割操作,实现用户交互式分割,通过在一幅图像上为前景和背景提供一些标记或利用边界框选择一个包含前景的区域,实现分割

①图片准备

博主选择了一张前景与背景区分明显的图片,和一张前景与背景区分不明显的图片:
在这里插入图片描述
在这里插入图片描述

②代码

import cv2
import numpy as npimg = cv2.imread('building.jpg')
img = cv2.resize(img, (960, 720))# 创建一个和图像大小相同的掩码,用于存储分割结果
mask = np.zeros(img.shape[:2], np.uint8)bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)# 定义鼠标回调函数,用于获取用户画出的矩形框
def draw_rect(event, x, y, flags, param):global ix, iy, drawing, rect_overif event == cv2.EVENT_LBUTTONDOWN:drawing = Trueix, iy = x, yelif event == cv2.EVENT_MOUSEMOVE:if drawing == True:img_copy = img.copy()cv2.rectangle(img_copy, (ix, iy), (x, y), (0, 255, 0), 2)cv2.imshow('image', img_copy)# 调用grabCut算法进行分割elif event == cv2.EVENT_LBUTTONUP:drawing = Falserect_over = Truecv2.rectangle(img, (ix, iy), (x, y), (0, 255, 0), 2)rect = (min(ix, x), min(iy, y), abs(ix - x), abs(iy - y))cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)cv2.imshow('image', img)# 创建一个窗口,绑定鼠标回调函数
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_rect)drawing = False  # 是否正在画矩形框
ix, iy = -1, -1  # 矩形框的起始坐标
rect_over = False  # 是否画完矩形框while True:cv2.imshow('image', img)k = cv2.waitKey(1) & 0xFF# 如果画完矩形框,根据掩码显示分割结果if rect_over == True:mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')img_cut = img * mask2[:, :, np.newaxis]cv2.imshow('result', img_cut)if k == 27:breakcv2.destroyAllWindows()

③运行结果

(1)前景与背景区分明显的图片
用鼠标画出矩形框:
在这里插入图片描述
分割结果:
在这里插入图片描述
(2)前景与背景区分不明显的图片
用鼠标画出矩形框:
在这里插入图片描述
分割结果:
在这里插入图片描述

④代码说明

使用了OpenCV库中的grabCut算法。此算法的原理是基于图割(graph cut)的思想,根据颜色信息和空间信息,将图像划分为四个部分:确定的背景、可能的背景、可能的前景和确定的前景。它会迭代地更新这四个部分,直到收敛为止。

  • 首先,读取一张图像,并创建一个和图像大小相同的掩码,用于存储分割结果。
  • 创建grabCut算法需要的背景和前景模型,用于存储颜色信息。
  • 定义一个鼠标回调函数,用于获取用户画出的矩形框(矩形框表示要分割出来的前景对象)。
  • 在这个函数中,当用户按下鼠标左键时,开始画矩形框,并记录起始坐标。当用户移动鼠标时,更新矩形框,并在图像上显示。当用户松开鼠标左键时,结束画矩形框,并调用grabCut算法进行分割。

2.采用聚类法实现图像的分割(K-means方法)

①代码

import numpy as np
import cv2
from sklearn.cluster import KMeans# 读取图像并转换为RGB格式
img = cv2.imread('building.jpg')img = cv2.resize(img, (960, 720))img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 将图像数据转换为二维数组
h, w, c = img.shape
data = img.reshape((h * w, c))# 使用K-means聚类算法对图像数据进行分割,设置聚类数为3
kmeans = KMeans(n_clusters=3, random_state=0)
kmeans.fit(data)# 获取聚类标签和中心点
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 将聚类标签转换为图像数据
labels = labels.reshape((h, w))
result = np.zeros((h, w, c), dtype=np.uint8)# 根据聚类中心点给每个像素赋予相应的颜色
for i in range(h):for j in range(w):result[i, j] = centers[labels[i, j]]# 显示原始图像和分割后的图像
cv2.imshow('Original', img)
cv2.imshow('Segmented', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

②运行结果

(1)前景与背景区分明显的图片
在这里插入图片描述
在这里插入图片描述
(2)前景与背景区分不明显的图片
在这里插入图片描述
在这里插入图片描述

③代码说明

使用了K-means方法实现图像的分割,K-means是一种基于划分的聚类算法,它的目标是将数据集划分为K个簇,使得每个数据点属于离它最近的簇中心所代表的簇。

在代码中,首先导入了numpy和cv2两个库,numpy用于处理数组和矩阵,cv2用于处理图像。然后读取了一张图像,并将其转换为RGB格式。接着将图像数据转换为二维数组,再使用sklearn.cluster中的KMeans类来进行聚类并对数据进行拟合。拟合后,可以获取聚类标签和中心点,再将聚类标签转换为图像数据,根据聚类中心给每个像素赋予相应的颜色,得到分割后的图像。最后显示原始图像和分割后的图像。

http://www.lryc.cn/news/338864.html

相关文章:

  • 移动Web学习06-移动端适配Less预处理器项目案例
  • LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
  • 24/04/15总结
  • vue3、vue2中nextTick源码解析
  • 【氮化镓】GaN HEMTs结温和热阻测试方法
  • c++11 标准模板(STL)本地化库 - 平面类别(std::codecvt) - 在字符编码间转换,包括 UTF-8、UTF-16、UTF-32 (四)
  • 【状态压缩 容斥原理 组合数学】100267. 单面值组合的第 K 小金额
  • .net框架和c#程序设计第三次测试
  • 架构师系列-搜索引擎ElasticSearch(五)- 索引设计
  • kafka ----修改log4j、jmx、jvm参数等
  • Python 全栈 Web 应用模板:成熟架构,急速开发 | 开源日报 No.223
  • STM32之DHT11温湿度传感器
  • paddle ocr
  • Xcode 15.0 新 #Preview 预览让 SwiftUI 界面调试更加悠然自得
  • 【VS2019】x64 Native Tools Command Prompt for Vs 2019使用conda命令进入环境
  • 网络篇09 | 运输层 udp
  • vim相关指令
  • STM32常见调试工具介绍
  • 简历上写熟悉Linux下常用命令?直接寄
  • 【设计模式】4、prototype 原型模式
  • ES6 关于Class类的继承 extends(2024-04-10)
  • 边缘计算【智能+安全检测】系列教程--使用OpenCV+GStreamer实现真正的硬解码,完全消除马赛克
  • Anaconda在Ubuntu下的安装与简单使用
  • 网络编程【InetAddress , TCP 、UDP 、HTTP 案例】
  • 软考中级工程师网络技术第二节网络体系结构
  • Mac 软件清单
  • 【Leetcode每日一题】 分治 - 颜色分类(难度⭐⭐)(57)
  • 微信登录功能-保姆级教学
  • 嵌入式MCU BootLoader开发配置详细笔记教程
  • Unity 中消息提醒框