当前位置: 首页 > news >正文

[python] Numpy库用法(持续更新)

先导入一下

import numpy as np
一、np.random用法
  1. 生成随机整数:np.random.randint(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的数组大小(可以是多维,下面同理)
  2. 生成随机浮点数:np.random.uniform(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的数组大小

在NumPy中,np.random.uniform这个函数的名称中的"uniform"指的是均匀分布(Uniform Distribution)。这种分布中,所有数值在一定范围内出现的概率是均等的,也就是说,这个范围内的任何一个数被选中的机会都是一样的。这和其他一些分布不同,比如正态分布,其中某些数值出现的机率比其他数值高。

具体来说,当你使用np.random.uniform(low, high, size)时:

  • lowhigh参数定义了数值的范围,其中low是下限(包含),high是上限(不包含)。
  • size参数决定了生成多少个这样的随机数。

举个例子,如果你调用np.random.uniform(1, 5, 3),NumPy将会生成一个数组,包含3个在1(包含)到5(不包含)之间均匀分布的随机浮点数。

因此,这个函数被命名为"uniform",正是因为它生成的是遵循均匀分布规律的随机数。

  1. 生成服从正态分布的随机数:np.random.normal(loc, scale, size)

    • loc: 均值
    • scale: 标准差
    • size: 生成的数组大小
  2. 生成一个随机排列:np.random.permutation(x)

    • x: 输入的数组或整数
  3. 生成一个随机样本:np.random.sample(size)

    • size: 生成的数组大小
  4. 生成一个随机种子:np.random.seed(seed)

    • seed: 种子值
  5. 生成一个符合指定概率分布的随机数:np.random.choice(a, size, replace, p)

    • a: 输入的数组
    • size: 生成的数组大小
    • replace: 是否可以重复抽样
    • p: 每个元素被抽样的概率
  6. 生成一个随机数组成的矩阵:np.random.rand(d0, d1, ..., dn)

    • d0, d1, ..., dn: 矩阵的维度
  7. 生成一个随机整数矩阵:np.random.randint(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的矩阵大 小
import numpy as np# 生成一个随机整数
random_int = np.random.randint(1, 10, 5)
print(random_int)# 生成一个随机浮点数
random_float = np.random.uniform(1.0, 5.0, 5)
print(random_float)# 生成一个服从正态分布的随机数
random_normal = np.random.normal(0, 1, 5)
print(random_normal)# 生成一个随机排列
random_permutation = np.random.permutation([1, 2, 3, 4, 5])
print(random_permutation)# 生成一个随机样本
random_sample = np.random.sample(5)
print(random_sample)# 生成一个随机种子
np.random.seed(0)
random_seed = np.random.rand(3)
print(random_seed)# 生成一个符合指定概率分布的随机数
random_choice = np.random.choice([1, 2, 3, 4, 5], 3, replace=False, p=[0.1, 0.2, 0.3, 0.2, 0.2])
print(random_choice)# 生成一个随机矩阵
random_matrix = np.random.rand(2, 3)
print(random_matrix)# 生成一个随机整数矩阵
random_int_matrix = np.random.randint(1, 10, (2, 3))
print(random_int_matrix)# 生成一个服从均匀分布的随机数
random_uniform = np.random.rand(2, 3)
print(random_uniform)

输出结果

[9 6 4 8 5]
[1.87678294 4.17125097 4.34816045 4.56395443 1.99147984]
[-0.27015379 -1.82642694  0.96417976  1.38643896  0.23534789]
[5 1 3 2 4]
[0.73823778 0.70459439 0.67601929 0.45422436 0.67000757]
[0.5488135  0.71518937 0.60276338]
[3 4 2]
[[0.891773   0.96366276 0.38344152][0.79172504 0.52889492 0.56804456]]
[[6 9 5][4 1 4]]
[[0.95715516 0.14035078 0.87008726][0.47360805 0.80091075 0.52047748]]
二.一些数据处理函数

 

 

 

np.load

  • 用途:这个函数用于加载存储在.npy文件中的NumPy数组。这是一种高效存储和读取NumPy数组数据的方式,特别适用于持久化大型数组。

np.astype

  • 用途astype方法允许你复制数组并将其元素转换为一个指定的类型。这在数据处理中非常常见,比如将整数数组转换为浮点数数组,或者将浮点数数组转换为整数数组。类型转换是数据预处理的一个重要步骤。

np.shape 和 .shape

  • 用途:这些用法提供了一种获取NumPy数组维度的方法。np.shape是一个函数,而.shape是数组对象的一个属性。了解数组的形状对于进行数组操作(如重塑或切片)是非常重要的。

np.reshape

  • 用途reshape方法允许在不更改数组数据的前提下,给数组一个新的形状。这在将数据准备为特定格式进行机器学习模型训练时尤其有用。

np.std

  • 用途:这个函数计算沿指定轴的标准差,是度量数据分散程度的一个重要统计量。在数据分析和科学研究中,标准差用于衡量数值的波动程度。

np.mean

  • 用途mean函数计算沿指定轴的平均值。平均值是最常用的统计量之一,用于描述数据集中趋势的中心位置。

np.max

  • 用途:这个函数计算沿指定轴的最大值。在数据分析中,了解数据的范围(最大值和最小值)对于评估数据的分布和极值非常重要。

np.arange

  • 用途arange函数返回一个有等差数列构成的数组。这个函数非常适用于生成序列数据,例如生成连续的时间点序列。它是Python内置range函数的NumPy版本,但可以生成浮点序列并具有更多的灵活性。

val_X.reshape(val_X.shape[0], -1)的操作并不是将数组重塑为一维数组,而是重塑为二维数组,其中第一维度保持不变,第二维度自动计算以包含剩余的所有元素。

具体来说:

  • val_X.shape[0]:这是val_X数组的第一个维度的大小,即行数。
  • -1:这个参数告诉NumPy自动计算第二个维度的大小,以便保持所有数据元素的总数不变。

例如,如果val_X原来的形状是(100, 2, 3),这表示有100个2x3的矩阵。执行val_X.reshape(val_X.shape[0], -1)后,形状将变为(100, 6),这意味着每个原始的2x3矩阵现在被展平成一个包含6个元素的一维数组,但在更大框架下,它们作为100行的二维数组存在。

因此,reshape操作并没有创建一个真正的一维数组,而是创建了一个二维数组,其第一维保持为原数组的行数,第二维展平了原有的每个子矩阵。

 

假设我们有一个数组test_Y,它表示某种测试数据的标签,如下所示:

test_Y = np.array([1, 2, 1, 3, 2, 1, 3])

我们想要找出所有标签等于1的数据的索引。在这个例子中,y的值设为1

  1. 首先,np.arange(num_data)生成一个从0开始的等差数列。假设num_data等于test_Y的长度,即7,那么生成的数组就是[0, 1, 2, 3, 4, 5, 6]

  2. 接下来,test_Y == 1生成一个布尔数组,表示test_Y中每个位置的值是否等于1。对于我们的test_Y,结果是:

    [True, False, True, False, False, True, False]

    这意味着在位置0、2和5的值等于1

  3. 最后,通过使用上一步生成的布尔数组作为索引,我们从步骤1生成的等差数列中选择索引。因此,np.arange(num_data)[test_Y == 1]的结果将是:

    [0, 2, 5]

    这个结果告诉我们,在test_Y数组中,值等于1的元素位于原数组的第0、第2和第5个位置。

总结一下,这行代码的作用是找出test_Y中所有等于y值的元素的索引,并以数组的形式返回这些索引。这种技巧在处理分类问题时特别有用,例如,当你需要根据分类结果选择或操作数据的子集时。

http://www.lryc.cn/news/336937.html

相关文章:

  • vue快速入门(十七)v-model数据双向绑定修饰符
  • 2024-2025年申报各类科研项目基金撰写及技巧
  • Python基于Django的微博热搜、微博舆论可视化系统,附源码
  • 【Linux学习】初识Linux指令(一)
  • 基于Python实现盈利8371%的交易策略
  • 如何在Linux中找到正在运行的Java应用的JAR文件
  • 几分钟学会TypeScript
  • 最新版手机软件App下载排行网站源码/App应用商店源码
  • R语言计算:t分布及t检验
  • uni-app的地图定位与距离测算功能的实现
  • 如何从应用商店Microsoft Store免费下载安装HEVC视频扩展插件
  • 【vue】v-if 条件渲染
  • Day37:LeedCode 738.单调递增的数字 968.监控二叉树 蓝桥杯 翻转
  • 详解Qt元对象系统
  • 无法用raven-js,如何直接使用TraceKit标准化错误字符串(一次有趣的探索)
  • Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用)
  • uniapp 检查更新
  • (Java)数据结构——正则表达式
  • 第6章 6.3.1 正则表达式的语法(MATLAB入门课程)
  • RX8130CE为用户提供带复位延迟和主备电管理的解决方案
  • JS文件导出变量
  • 已知私钥和密文,如何用python进行RSA解密
  • vue2-vue3面试
  • jmeter生成随机数的详细步骤及使用方式
  • 速盾:为什么会出现高防cdn?它适合哪些行业?
  • GB∕T 25058-2019 信息安全技术 网络安全等级保护实施指南
  • 使用Nodejs + express连接数据库mongoose
  • 朗致集团面试-Java架构师
  • Ubuntu 23.10 搜狗拼音输入法闪屏解决
  • 备战蓝桥杯---刷杂题2