当前位置: 首页 > news >正文

网格矢量如何计算莫兰指数

网格矢量如何计算莫兰指数

引言

遇到一个问题,计算矢量网格的莫兰指数。

概念解释

莫兰指数

莫兰指数(Moran’s Index)是一种空间自相关指标,用于衡量空间数据的相似性和聚集程度。它可以用来描述一个区域与其邻近区域之间的属性值的相关性。莫兰指数的取值范围通常在-1到1之间。

  • 当莫兰指数接近1时,表示空间数据呈现出正相关,即相似的值倾向于聚集在一起。
  • 当莫兰指数接近-1时,表示空间数据呈现出负相关,即不同的值倾向于聚集在一起。
  • 当莫兰指数接近0时,表示空间数据呈现出随机分布,没有明显的空间自相关性。

knearst=4?

knearst=4矩阵是一种空间权重矩阵,用于定义空间数据中每个观测点的邻域。在这种矩阵中,每个观测点的邻域由其最近的4个点组成。

示意图,这个用距离小时

解决思路

计算矢量数据中每个要素(网格)的局部莫兰指数,并将计算结果添加到矢量数据的属性表中。我做了一个示意矢量,如图所示:

因为需要涉及到矢量数据的操作,这里我们使用gdal

还涉及到莫兰指数,我们使用pysal,这个包用于空间权重矩阵的构建、空间自相关指标的计算、空间回归模型的估计等。

初始化和读取矢量数据

import numpy as np
import pysal
from osgeo import ogrdriver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据.shp"
dataset = driver.Open(SHP_PATH, 1) 
layer = dataset.GetLayer()
  1. 使用 ogr 库打开矢量数据文件(ESRI Shapefile),以读写模式打开。
  2. 获取矢量数据的图层。

提取属性值和坐标

values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('singlearea'))values = np.array(values)
coords = np.array(coords)
  1. 遍历图层中的每个要素(feature)。
  2. 获取要素的几何体(geometry),并计算其质心坐标。
  3. 将质心坐标添加到 coords 列表中。
  4. 将指定字段(‘singlearea’)的属性值添加到 values 列表中。
  5. 将属性值和坐标转换为 NumPy 数组。

创建权重矩阵

knn = pysal.lib.weights.KNN(coords, k=4)
knn.transform = 'r'
  1. 使用 pysal 库的 KNN 函数创建 k 最近邻权重矩阵,设置 k=4
  2. 对权重矩阵进行行标准化。

计算局部莫兰指数

local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)
  1. 使用 pysal 库的 Moran_Local 函数计算每个网格的局部莫兰指数。
  2. 打印计算得到的局部莫兰指数。

将局部莫兰指数添加到矢量数据属性表

lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(local_moran.Is[i]))layer.SetFeature(feature)
  1. 创建一个新的字段(‘LISA_I’)来存储局部莫兰指数。
  2. 重新打开矢量数据集并获取图层。
  3. 遍历图层中的每个要素。
  4. 使用 layer.GetFeature(i) 获取要素,并将对应的局部莫兰指数赋值给新字段。
  5. 更新要素的属性表。

关闭数据集并销毁数据源

dataset.Destroy()
dataset = None
print("局部莫兰指数已成功添加到矢量数据属性表中。")
  1. 关闭矢量数据集。
  2. 销毁数据源以释放资源。
  3. 打印提示信息,表示局部莫兰指数已成功添加到矢量数据的属性表中。

完整代码

import numpy as np
import pysal
from osgeo import ogr# 打开矢量数据文件(以读写模式打开)
driver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据 - 副本.shp"
dataset = driver.Open(SHP_PATH, 1)  
layer = dataset.GetLayer()# 提取属性值和坐标
values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('cenlan'))# 将属性值和坐标转换为NumPy数组
values = np.array(values)
coords = np.array(coords)# 创建k最近邻权重矩阵(knearst=4)
knn = pysal.lib.weights.KNN(coords, k=4)# 行标准化权重矩阵
knn.transform = 'r'# 计算每个网格的局部莫兰指数
local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)# 将标准化后的局部莫兰指数添加到矢量数据属性表,使用有效的字段名称
lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)# 重新打开数据集并获取图层
dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()# 使用 layer.GetFeature(i) 获取要素并更新,使用更新后的字段名称
for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(normalized_local_moran[i]))layer.SetFeature(feature)# 关闭数据集并销毁数据源
dataset.Destroy()
dataset = Noneprint("标准化后的局部莫兰指数已成功添加到矢量数据属性表中。")

效果展示

运行完代码,效果为:

总结

使用gdal负责空间数据处理,使用pysal完成莫兰指数的计算,然后把计算结果写入到属性表里,

http://www.lryc.cn/news/335130.html

相关文章:

  • 《containerd原理剖析与实战》大模型时代下如何学习云原生
  • 【实用工具】使用飞书机器人监控工程日志
  • NIKKE胜利女神PC怎么设置中文 手把手教你设置中文教程
  • 【leetcode面试经典150题】2.移除元素(C++)
  • 实现几何对象按照一定距离向外缓冲
  • 现代深度学习模型和技术
  • go的orm框架-Gorm
  • 嵌入式开发学习---(部分)数据结构(无代码)
  • ChatGPT 之联盟营销
  • 1.k8s简介
  • go包下载时报proxyconnect tcp: dial tcp 127.0.0.1:80: connectex错误的解决方案
  • Vaadin框架是如何处理前后端交互的?列举几个Vaadin中常用的UI组件,并描述它们的作用。如何使用Vaadin的布局管理器来构建复杂的用户界面?
  • 动态属性的响应式问题和行内编辑的问题
  • 微信小程序第六次课(模块化和绑定事件)
  • 【Unity添加远程桌面】使用Unity账号远程控制N台电脑
  • maven的settings.xml、pom.xml配置文件
  • 使用MQTT.fx接入新版ONENet(24.4.8)
  • Selenium 自动化遇见 shadow-root 元素怎么处理?
  • 软件系统质量属性_2.面向架构评估的质量属性
  • 设计模式:抽象工厂
  • 【环境搭建】ubuntu工作站搭建全流程(显卡4090)
  • 蓝桥杯每日一题:有序分数(递归)
  • SpringBoot学习之Kibana下载安装和启动(Mac版)(三十二)
  • Mac下Docker Desktop starting的解决方法
  • Leetcode面试经典150_Q80删除有序数组中的重复项 II
  • android 使用ollvm混淆so
  • Swift:在 Win10 上编程入门
  • Linux多进程通信(4)——消息队列从入门到实战!
  • [Flutter]导入singular_flutter_sdk后运行到Android报错
  • ChatGPT新手指南:如何用AI写出专业学术论文