当前位置: 首页 > news >正文

[开源] 基于GRU的时间序列预测模型python代码

基于GRU的时间序列预测模型python代码分享给大家,记得点赞哦

#!/usr/bin/env python
# coding: utf-8import time
time_start = time.time() import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, GRU
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import r2_score 
from keras import optimizers
from pylab import *
import tensorflow as tfmpl.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False# 调用GPU加速
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)def creat_dataset(dataset, look_back=10):dataX, dataY = [], []for i in range(len(dataset)-look_back-1):a = dataset[i: (i+look_back)]dataX.append(a)dataY.append(dataset[i+look_back])return np.array(dataX), np.array(dataY)dataframe = pd.read_csv('天气.csv',header=0, parse_dates=[0],index_col=0, usecols=[0, 1])#header=0第0行为表头,index_col=0第一列为索引,usecols=[0, 1]选取第一列和第二列
dataset = dataframe.values
dataframe.head(10)plt.figure(figsize=(10, 4),dpi=150)
dataframe.plot()
plt.ylabel('AQI')
plt.xlabel('time/day')
font = {'serif': 'Times New Roman','size': 20}
plt.rc('font', **font)
plt.show()scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))train_size = int(len(dataset)*0.8)
test_size = len(dataset)-train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)model = Sequential()
model.add(GRU(input_dim=1, units=50, return_sequences=True))
model.add(GRU(input_dim=50, units=100, return_sequences=True))
model.add(GRU(input_dim=100, units=200, return_sequences=True))
model.add(GRU(300, return_sequences=False))
model.add(Dropout(0.2))model.add(Dense(100))
model.add(Dense(units=1))model.add(Activation('relu'))
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam')
model.summary()
len(model.layers)history = model.fit(trainX, trainY, batch_size=64, epochs=100, validation_split=None, verbose=2)
print('compilatiom time:', time.time()-start)#get_ipython().run_line_magic('matplotlib', 'notebook')
fig1 = plt.figure(figsize=(10, 3),dpi=150)
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()trainPredict = model.predict(trainX)
testPredict = model.predict(testX)trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
print('Train Sccore %.4f RMSE' %(testScore))
testScore = mean_absolute_error(testY, testPredict[:, 0])
print('Train Sccore %.4f MAE' %(testScore))
testScore = r2_score(testY, testPredict[:, 0])
print('Train Sccore %.4f R2' %(testScore))trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[:] = np.nan
trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredicttestPredictPlot = np.empty_like(dataset)
testPredictPlot[:] = np.nan
testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredictdataset = scaler.inverse_transform(dataset)#get_ipython().run_line_magic('matplotlib', 'notebook')
plt.figure(figsize=(10, 4),dpi=150)
plt.title(' Prediction',size=15)
plt.plot(dataset, color='red', linewidth=1.5, linestyle="-",label='Actual')
plt.plot(testPredictPlot,  color='blue',linewidth=2,linestyle="--", label='Prediction')
plt.legend()
plt.ylabel('AQI',size=15)
plt.xlabel('time/day',size=15)
plt.show()time_end = time.time()  
time_sum = time_end - time_start  
print(time_sum)

更多时间序列预测代码获取:时间序列预测算法全集合--深度学习

http://www.lryc.cn/news/334360.html

相关文章:

  • SQL SERVER 备份
  • 提示词专场:从调整提示改善与LLMs的沟通,到利用LLMs优化提示效果
  • 测开面经(pytest测试案例,接口断言,多并发断言)
  • Golang 开发实战day09 - package Scope
  • 24考研-东南大学916经验贴
  • 【AI面试】YOLO 如何通过 k-means 得到 anchor boxes的?Yolo、SSD 和 faster rcnn 的正负样本定义
  • MySQL高级篇(B-Tree、Btree)
  • Zookeeper脑裂解决方案
  • 常用日常脚本
  • Longan Pi 3H 开发板体验
  • SpringCloud Alibaba Sentinel 创建流控规则
  • Mysql底层原理五:如何设计、用好索引
  • python学习杂记
  • C# Socket发送、接收结构体
  • ics-05-攻防世界
  • Web API(三)之事件流事件委托其他事件
  • SSL证书的作用是什么?
  • 皮具5G智能制造工厂数字孪生可视化平台,推进企业数字化转型
  • RH850从0搭建Autosar开发环境【3X】- Davinci Configurator之Port模块配置详解(MCAL配置)
  • 多叉树题目:子树中标签相同的结点数
  • 帝国CMS模板源码整站安装说明(图文)
  • 物联网系统未来的发展趋势
  • 基于支持 GPT 的服务的初创公司
  • 基于springboot实现教师人事档案管理系统项目【项目源码+论文说明】
  • 上行上传rsync+inotify
  • 借助ChatGPT写作:打造学术论文中的亮点与互动
  • 逐步学习Go-sync.Mutex(详解与实战)
  • 每日三道面试题之 Java并发编程 (一)
  • 车身稳定控制系统原理是什么?
  • vue3前端加载动画 lottie-web 的简单使用案例