当前位置: 首页 > news >正文

【六 (2)机器学习-EDA探索性数据分析模板】

目录

    • 文章导航
    • 一、EDA:
    • 二、导入类库
    • 三、导入数据
    • 四、查看数据类型和缺失情况
    • 五、确认目标变量和ID
    • 六、查看目标变量分布情况
    • 七、特征变量按照数据类型分成定量变量和定性变量
    • 八、查看定量变量分布情况
    • 九、查看定量变量的离散程度
    • 十、查看定量变量与目标变量关系
    • 十一、查看定性变量分布情况
    • 十二、查看定性变量与目标变量关系
    • 十三、查看定性变量对目标变量的显著性影响
    • 十四、查看定性变量和目标变量的spearman相关系数
    • 十五、查看定量变量与目标变量相关性
    • 十六、查看定性变量与目标变量相关性

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、EDA:

EDA(Exploratory Data Analysis)即探索性数据分析,EDA通过可视化、统计和图形化的方法,对数据集进行全面的、非形式化的初步分析,帮助分析人员了解数据的基本特征,发现数据中的规律和模式。这有助于获取对数据的直观感受和深刻理解,为后续的数据处理和建模提供基础。

二、导入类库

# 导入类库
import numpy as np
import pandas as pd
import scipy.stats as statsimport matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px  import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import RobustScalerfrom sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score, GridSearchCV, KFoldfrom sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin
from sklearn.base import clone
from sklearn.linear_model import Lasso
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.svm import SVR, LinearSVR
from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge
from sklearn.kernel_ridge import KernelRidge
from xgboost import XGBRegressor
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# pandas显示所有行和列 
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

三、导入数据

train = pd.read_csv('./train.csv')
test = pd.read_csv('./test.csv')train.head()

四、查看数据类型和缺失情况

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90615 entries, 0 to 90614
Data columns (total 10 columns):#   Column          Non-Null Count  Dtype  
---  ------          --------------  -----  0   id              90615 non-null  int64  1   Sex             90615 non-null  object 2   Length          90615 non-null  float643   Diameter        90615 non-null  float644   Height          90615 non-null  float645   Whole weight    90615 non-null  float646   Whole weight.1  90615 non-null  float647   Whole weight.2  90615 non-null  float648   Shell weight    90615 non-null  float649   Rings           90615 non-null  int64  
dtypes: float64(7), int64(2), object(1)
memory usage: 6.9+ MB

五、确认目标变量和ID

Target_features = ['Rings'] #目标变量
ID_features = ['id'] #id

六、查看目标变量分布情况

Target_counts = train[Target_features].value_counts().reset_index()  
Target_counts.columns = [Target_features[0], 'Count']  # 绘制条形图  
fig = px.bar(Target_counts,x=Target_features[0], y='Count', title=Target_features[0]+'分布')  # 遍历每个轨迹并设置文本  
def set_text(trace):  trace.text = [f"{val:.1f}" for val in trace.y]  trace.textposition = 'outside'  fig.for_each_trace(set_text)  # 显示图表  
fig.show()

在这里插入图片描述

七、特征变量按照数据类型分成定量变量和定性变量

# 移除ID和目标变量
train_columns = list(train.columns)
train_columns.remove(Target_features[0])
train_columns.remove(ID_features[0])# 特征变量按照数据类型分成定量变量和定性变量
quantitative = [feature for feature in train_columns if train.dtypes[feature] != 'object'] # 定量变量
print('定量变量')
print(quantitative)
qualitative = [feature for feature in train_columns if train.dtypes[feature] == 'object'] # 定性变量
print('定性变量')
print(qualitative)
定量变量
['Length', 'Diameter', 'Height', 'Whole weight', 'Whole weight.1', 'Whole weight.2', 'Shell weight']
定性变量
['Sex']

八、查看定量变量分布情况

# 查看定量变量分布情况
m_cont = pd.melt(train, value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.distplot, 'value')

在这里插入图片描述

九、查看定量变量的离散程度

# 查看定量变量的离散程度
def plot_boxplots(df):m_disc = pd.melt(df)g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)g.map(sns.boxplot, 'variable', 'value', width=0.5)plt.show()plot_boxplots(train[quantitative])       

在这里插入图片描述

十、查看定量变量与目标变量关系

# 定量变量与目标变量关系图
m_cont = pd.melt(train, id_vars=Target_features[0], value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=True)
g.map(plt.scatter, 'value', Target_features[0])

在这里插入图片描述

十一、查看定性变量分布情况

# 定性变量频数统计图
m_disc = pd.melt(train, value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.countplot, 'value')

在这里插入图片描述

十二、查看定性变量与目标变量关系

# 定性变量与目标变量关系图
m_disc = pd.melt(train, id_vars=Target_features[0], value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.boxplot, 'value', Target_features[0])

在这里插入图片描述

十三、查看定性变量对目标变量的显著性影响

# 查看定性变量对目标变量的显著性影响
def anova(frame, qualitative):anv = pd.DataFrame()anv['feature'] = qualitativep_vals = []for fea in qualitative:samples = []cls = frame[fea].unique() # 变量的类别值for c in cls:c_array = frame[frame[fea]==c][Target_features[0]].valuessamples.append(c_array)p_val = stats.f_oneway(*samples)[1] # 获得p值,p值越小,对SalePrice的显著性影响越大p_vals.append(p_val)anv['pval'] = p_valsreturn anv.sort_values('pval')
a = anova(train, qualitative)
a['disparity'] = np.log(1./a['pval'].values) # 对SalePrice的影响悬殊度
plt.figure(figsize=(8, 6))
sns.barplot(x='feature', y='disparity', data=a)
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

十四、查看定性变量和目标变量的spearman相关系数

# 查看定性变量和目标变量的spearman相关系数
# 需要先把定性变量处理为数值类型
def encode(frame, feature):ordering = pd.DataFrame()ordering['val'] = frame[feature].unique()ordering.index = ordering['val']ordering['spmean'] = frame[[feature, Target_features[0]]].groupby(feature)[Target_features[0]].mean()ordering = ordering.sort_values('spmean')ordering['ordering'] = np.arange(1, ordering.shape[0]+1)ordering = ordering['ordering'].to_dict() # 返回的数据样例{category1:1, category2:2, ...}# 对frame[feature]编码for category, code_value in ordering.items():frame.loc[frame[feature]==category, feature+'_E'] = code_value
qual_encoded = []
for qual in qualitative:encode(train, qual)qual_encoded.append(qual+'_E')
# print(qual_encoded)def spearman(frame, features):spr =  pd.DataFrame()spr['feature'] = featuresspr['spearman'] = [frame[f].corr(frame[Target_features[0]], 'spearman') for f in features]spr = spr.sort_values('spearman')plt.figure(figsize=(6, 0.25*len(features)))sns.barplot(x='spearman', y='feature', data=spr)
spearman(train, quantitative+qual_encoded)

在这里插入图片描述

十五、查看定量变量与目标变量相关性

# 定量变量与目标变量相关性
# plt.figure(1, figsize=(12,9))
corrmat = train[quantitative+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

十六、查看定性变量与目标变量相关性

# 定性变量与目标变量相关性# plt.figure(1, figsize=(12,9))
corrmat = train[qual_encoded+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

http://www.lryc.cn/news/333179.html

相关文章:

  • Java集合——Map、Set和List总结
  • Python TensorFlow 2.6 获取 MNIST 数据
  • EChart简单入门
  • 阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云
  • 设计模式,工厂方法模式
  • WPF中嵌入3D模型通用结构
  • 举个例子说明联邦学习
  • 【Python】免费的图片/图标网站
  • Pytorch中的nn.Embedding()
  • WebSocketServer后端配置,精简版
  • Python程序设计 多重循环(二)
  • 前端面试题--CSS系列(一)
  • VSCode好用插件
  • Vue3:对ref、reactive的一个性能优化API
  • Python 用pygame简简单单实现一个打砖块
  • 软考113-上午题-【计算机网络】-IPv6、无线网络、Windows命令
  • 深入浅出 -- 系统架构之负载均衡Nginx资源压缩
  • 基于jsp+Spring boot+mybatis的图书管理系统设计和实现
  • Pytorch转onnx
  • 苍穹外卖——项目搭建
  • 云原生架构(微服务、容器云、DevOps、不可变基础设施、声明式API、Serverless、Service Mesh)
  • 基于重写ribbon负载实现灰度发布
  • 无端科技一面(生死狙击项目组 战斗客户端 40min)
  • idea开发 java web 高校学籍管理系统bootstrap框架web结构java编程计算机网页
  • linux之文件系统、inode和动静态库制作和发布
  • C++IO类,输入输出缓冲区,流状态
  • 机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单
  • 阿里云4核8G服务器ECS通用算力型u1实例优惠价格
  • Jetson nano部署Yolov8 安装Archiconda3+创建pytorch环境(详细教程+错误解决)
  • Node.JS多线程PromisePool之promise-pool库实现