商品秒杀接口压测及优化
目录
- 一、生成测试用户
- 二、jmeter压测
- 三、秒杀接口优化
- 1、优化第一步:解决超卖
- 2、优化第二步:Redis重复抢购
- 3、优化第三步:Redis预减库存
- ①商品初始化
- ②预减库存
一、生成测试用户
将UserUtils工具类导入到zmall-user模块中,运行生成测试用户信息,可根据自身电脑情况来生成用户数量。
1)必须保证zmall-user模块处于运行状态下,在进行测试用户数据生成操作;
2)注意修改UserUtils中的用户登录接口地址及端口;同时请修改用户登录接口,将生成的token令牌存入响应封装类中;//5.通过UUID生成token令牌并保存到cookie中 String token= UUID.randomUUID().toString().replace("-",""); ... return new JsonResponseBody<>(token);
3)设置生成登录令牌存储位置;
4)修改数据库名、登录账号及密码;
5)设置生成测试用户数量;
UserUtils
package com.zking.zmall.utils;import com.alibaba.nacos.common.utils.MD5Utils;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.zking.zmall.model.User;
import com.zking.zmall.util.JsonResponseBody;import java.io.*;
import java.net.HttpURLConnection;
import java.net.URL;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;public class UserUtils {private static void createUser(int count) throws Exception {List<User> lst=new ArrayList<User>();//循环添加用户数据for(int i=0;i<count;i++){User user=new User();user.setLoginName("user"+i);user.setUserName("测试用户"+i);user.setPassword(MD5Utils.md5Hex("123456".getBytes()));user.setType(0);user.setMobile((17700000000L+i)+"");user.setEmail("user"+i+"@139.com");user.setIdentityCode((430104199912120000L+i)+"");lst.add(user);}System.out.println("create users");//获取数据库连接Connection conn=getConn();//定义SQLString sql="insert into zmall_user(loginName,userName,password,identityCode,email,mobile,type) values(?,?,?,?,?,?,?)";//执行SQLPreparedStatement ps=conn.prepareStatement(sql);//赋值for (User user : lst){ps.setString(1,user.getLoginName());ps.setString(2,user.getUserName());ps.setString(3,user.getPassword());ps.setString(4,user.getIdentityCode());ps.setString(5,user.getEmail());ps.setString(6,user.getMobile());ps.setInt(7,user.getType());ps.addBatch();}ps.executeBatch();ps.clearParameters();ps.close();conn.close();System.out.println("insert to db");//登录,生成UserTicketString urlString="http://localhost:8010/userLogin";File file=new File("C:\\Users\\Administrator\\DeskTop\\config.txt");if(file.exists()){file.delete();}RandomAccessFile accessFile=new RandomAccessFile(file,"rw");//设置光标位置accessFile.seek(0);for (User user : lst) {URL url=new URL(urlString);HttpURLConnection co = (HttpURLConnection) url.openConnection();co.setRequestMethod("POST");co.setDoOutput(true);OutputStream out=co.getOutputStream();String params="loginName="+user.getLoginName()+"&password=123456";out.write(params.getBytes());out.flush();InputStream in=co.getInputStream();ByteArrayOutputStream bout=new ByteArrayOutputStream();byte[] buffer=new byte[1024];int len=0;while((len=in.read(buffer))>=0){bout.write(buffer,0,len);}in.close();bout.close();String response=new String(bout.toByteArray());ObjectMapper mapper=new ObjectMapper();JsonResponseBody jsonResponseBody=mapper.readValue(response, JsonResponseBody.class);String token=jsonResponseBody.getData().toString();System.out.println("create token:"+token);accessFile.seek(accessFile.length());accessFile.write(token.getBytes());accessFile.write("\r\n".getBytes());//System.out.println("write to file:"+token);}accessFile.close();System.out.println("over");}private static Connection getConn() throws Exception {String url="jdbc:mysql://localhost:3306/zmall?useSSL=false&useUnicode=true&useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=UTC&characterEncoding=UTF8";String driver="com.mysql.jdbc.Driver";String username="root";String password="123456";Class.forName(driver);return DriverManager.getConnection(url,username,password);}public static void main(String[] args) throws Exception {createUser(50);}
}
二、jmeter压测
相关配置
1.线程计划>添加>线程(用户)>线程组
2.线程组>添加>配置元件>http请求默认值
3.线程组>添加>取样器>http请求
4.线程组>添加>配置元件>http cookie管理器
5.线程组>添加>配置元件>CSV数据文件设置
6.线程组>添加>监听器>汇总报告
7.线程组>添加>监听器>查看结果树
8.线程组>添加>监听器>用表格查看结果
线程组:200个线程,1秒之内发送,循环1次。测试结果如下:吞吐量为1328/s
数据库中的秒杀商品表中的商品出现了库存为负数的问题。
订单表和订单项表中出现了秒杀商品超卖问题。
三、秒杀接口优化
1、优化第一步:解决超卖
更新秒杀商品库存的sql语句,只有当库存大于0才能更新库存;修改更新秒杀库存方法updateKillStockById的返回类型为boolean,用于判断是否更新成功。
OrderServiceImpl
@Transactional@Overridepublic JsonResponseBody<?> createKillOrder(User user, Integer pid, Float price) {//1.根据秒杀商品编号获取秒杀商品库存是否为空//........//2.秒杀商品库存减一boolean update = killService.update(new UpdateWrapper<Kill>().eq("item_id", pid).gt("total", 0).setSql("total=total-1"));if(!update)throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);//3.生成秒杀订单及订单项//........return new JsonResponseBody();}
2、优化第二步:Redis重复抢购
在RedisService中新增以下两个方法,用于Redis重复抢购的判断操作。
- 根据用户ID和秒杀商品ID为Key,将秒杀订单保存到Redis中;
- 根据用户ID和秒杀商品ID从Redis中获取对应的秒杀商品;
RedisServiceImpl
/*** 将秒杀订单保存到Redis* @param pid 商品ID* @param order 秒杀订单
*/
@Override
public void setKillOrderToRedis(Integer pid, Order order) {redisTemplate.opsForValue().set("order:"+order.getUserId()+":"+pid,order,1800, TimeUnit.SECONDS);
}/*** 根据用户ID和商品ID从Redis中获取秒杀商品,用于重复抢购判断* @param uid 用户ID* @param pid 商品ID* @return 返回Redis中存储的秒杀订单
*/
@Override
public Order getKillOrderByUidAndPid(Integer uid, Integer pid) {return (Order) redisTemplate.opsForValue().get("order:"+uid+":"+pid);
}
这里用户抢购的秒杀订单保存到Redis默认设置是1800秒,即30分钟;可视情况具体调整。
OrderServiceImpl
@Transactional
@Override
public JsonResponseBody<?> createKillOrder(User user, Integer pid) {.../***********在库存判断是否为空之后***********///6.根据秒杀商品ID和用户ID判断是否重复抢购Order order = redisService.getKillOrderByUidAndPid(user.getId(), pid);if(null!=order)throw new BusinessException(JsonResponseStatus.ORDER_REPART);/***********在根据商品ID获取商品之前***********///4.秒杀商品库存减一boolean flag=killService.updateKillStockById(pid);if(!flag)throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);...//生成秒杀订单等操作//重点,重点,重点,在此处将生成的秒杀订单保存到Redis中,用于之后的重复抢购判断redisService.setKillOrderToRedis(pid,order);return new JsonResponseBody<>();
}
此处第二步优化完毕,再次进行JMeter压测,并查看测试情况。
3、优化第三步:Redis预减库存
①商品初始化
将参与秒杀活动且秒杀状态、秒杀活动时间有效的商品推送到Redis中,并对秒杀商品设置超时时间。
超时时间的设定取至于活动结束时间减去活动开始时间的差值,但必须是有效活动时间,也就是当前时间在活动开始时间与结束时间范围之内。
IRedisService
/**
* 设置秒杀商品库存到Redis中
* @param pid 秒杀商品ID
* @param total 秒杀商品数量
* @param expires 秒杀商品存储过期时间
*/
void setKillTotaltoRedis(Integer pid,Integer total,long expires);
RedisServiceImpl
@Override
public void setKillTotaltoRedis(Integer pid, Integer total,long expires) {redisTemplate.opsForValue().set("goods:"+pid,total,expires,TimeUnit.DAYS);
}
OrderController
在zmall-order订单模块中的OrderController类上实现InitializingBean,完成秒杀商品预加载。
package com.zking.zmall.controller;import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.zking.zmall.model.Kill;
import com.zking.zmall.model.Order;
import com.zking.zmall.model.User;
import com.zking.zmall.service.IOrderService;
import com.zking.zmall.service.impl.KillServiceImpl;
import com.zking.zmall.service.impl.RedisServiceImpl;
import com.zking.zmall.util.JsonResponseBody;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;import java.time.Duration;
import java.time.Instant;
import java.util.Date;
import java.util.List;@Controller
public class OrderController implements InitializingBean {@Autowiredprivate IOrderService orderService;@Autowiredprivate KillServiceImpl killService;@Autowiredprivate RedisServiceImpl redisService;/*** 秒杀商品初始化* @throws Exception*/@Overridepublic void afterPropertiesSet() throws Exception {List<Kill> list =killService.list(new QueryWrapper<Kill>()//秒杀活动必须是激活状态.eq("is_active", 1)//秒杀活动结束时间必须>=当前时间,小于证明活动已结束.ge("end_time",new Date().toLocaleString()));list.forEach(kill -> {//计算秒杀商品存入Redis的过期时间,此处以天为单位Instant start = kill.getStartTime().toInstant();Instant end = kill.getEndTime().toInstant();long days = Duration.between(start, end).toDays();redisService.setKillTotaltoRedis(kill.getItemId(),kill.getTotal(),days);});}@RequestMapping("/orderUserList")@ResponseBodypublic List<Order> orderUserList(){return orderService.list(new QueryWrapper<Order>().eq("userId",18));}@RequestMapping("/createOrder/{pid}/{num}")@ResponseBodypublic Order createOrder(@PathVariable("pid") Integer pid,@PathVariable("num") Integer num){return orderService.createOrder(pid,num);}@RequestMapping("/createKillOrder/{pid}/{price}")@ResponseBodypublic JsonResponseBody<?> createKillOrder(User user,@PathVariable("pid") Integer pid,@PathVariable("price") Float price){return orderService.createKillOrder(user,pid,price);}
}
②预减库存
第一步:在RedisService中定义库存预减和递增方法。预减方法是在用户抢购商品成功后对商品进行库存预减;递增方法是在高并发情况下Redis库存预减可能会出现负数情况,通过递增方法进行库存回滚为0
IRedisService
/**
* 根据秒杀商品ID实现Redis商品库存递增
* @param pid
* @return
*/
long increment(Integer pid);/**
* 根据秒杀商品ID实现Redis商品库存递减
* @param pid
* @return
*/
long decrement(Integer pid);
RedisServiceImpl
@Override
public long increment(Integer pid) {return redisTemplate.opsForValue().increment("goods:"+pid);
}@Override
public long decrement(Integer pid) {return redisTemplate.opsForValue().decrement("goods:"+pid);
}
第二步:修改订单生成方法,加入Redis库存预减判断
请在Redis重复抢购判断的下面加入Redis库存预减操作。
OrderServiceImpl
package com.zking.zmall.service.impl;import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.baomidou.mybatisplus.core.conditions.update.UpdateWrapper;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.zking.zmall.exception.BusinessException;
import com.zking.zmall.mapper.OrderMapper;
import com.zking.zmall.model.Kill;
import com.zking.zmall.model.Order;
import com.zking.zmall.model.OrderDetail;
import com.zking.zmall.model.User;
import com.zking.zmall.service.ApiProductService;
import com.zking.zmall.service.IOrderService;
//import io.seata.spring.annotation.GlobalTransactional;
import com.zking.zmall.util.JsonResponseBody;
import com.zking.zmall.util.JsonResponseStatus;
import com.zking.zmall.util.SnowFlake;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;/*** <p>* 服务实现类* </p>** @author xnx* @since 2023-02-06*/
@Service
public class OrderServiceImpl extends ServiceImpl<OrderMapper, Order> implements IOrderService {@Autowiredprivate KillServiceImpl killService;@Autowiredprivate OrderDetailServiceImpl orderDetailService;@Autowiredprivate ApiProductService productService;@Autowiredprivate RedisServiceImpl redisService;// @Transactional
// @Override
// public Order createOrder(Integer pid, Integer num) {
// //根据商品ID修改商品对应的库存
// productService.updateStock(pid,num);
// //新增订单
// Order order=new Order();
// //此处只是做模拟操作
// this.save(order);
// return order;
// }// @GlobalTransactional@Transactional@Overridepublic Order createOrder(Integer pid, Integer num) {//根据商品ID修改商品对应的库存productService.updateStock(pid,num);//异常模拟int i = 1 / 0;//新增订单Order order=new Order();//此处只是做模拟操作this.save(order);return order;}@Transactional@Overridepublic JsonResponseBody<?> createKillOrder(User user, Integer pid, Float price) {//1.根据秒杀商品编号获取秒杀商品库存是否为空
// Kill kill = killService.getOne(new QueryWrapper<Kill>().eq("item_id",pid));
// if(kill.getTotal()<1)
// throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);//2.秒杀商品库存减一
// killService.update(new UpdateWrapper<Kill>()
// .eq("item_id",pid)
// .setSql("total=total-1"));/***********在库存判断是否为空之后***********///6.Redis库存预减long stock = redisService.decrement(pid);if(stock<0){redisService.increment(pid);throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);}//5.根据秒杀商品ID和用户ID判断是否重复抢购Order order = redisService.getKillOrderByUidAndPid(user.getId(), pid);if(null!=order)throw new BusinessException(JsonResponseStatus.ORDER_REPART);//2.秒杀商品库存减一boolean update = killService.update(new UpdateWrapper<Kill>().eq("item_id", pid).gt("total", 0).setSql("total=total-1"));if(!update)throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);
// boolean flag=killService.updateKillStockById(pid);
// if(!flag)
// throw new BusinessException(JsonResponseStatus.STOCK_EMPTY);//3.生成秒杀订单及订单项SnowFlake snowFlake=new SnowFlake(2,3);Long orderId=snowFlake.nextId();int orderIdInt = new Long(orderId).intValue();//创建订单
// Order order=new Order();order.setUserId(user.getId());order.setLoginName(user.getLoginName());order.setCost(price);order.setSerialNumber(orderIdInt+"");this.save(order);//创建订单项OrderDetail orderDetail=new OrderDetail();orderDetail.setOrderId(orderIdInt);orderDetail.setProductId(pid);orderDetail.setQuantity(1);orderDetail.setCost(price);orderDetailService.save(orderDetail);//生成秒杀订单等操作//重点,重点,重点,在此处将生成的秒杀订单保存到Redis中,用于之后的重复抢购判断redisService.setKillOrderToRedis(pid,order);return new JsonResponseBody();}}
第三步:还原测试数据,重新使用jmeter压测,这时可以发现明显压测效率要提升很多。
但是还是要根据不同电脑配置情况来决定,配置太低,效率也提升不了多少。
尤其是链接远程redis,会导致压测的吞吐量直线下降