当前位置: 首页 > news >正文

基于深度学习的图书管理推荐系统(python版)

基于深度学习的图书管理推荐系统

1、效果图

在这里插入图片描述

1/1 [==============================] - 0s 270ms/step
[13 11  4 19 16 18  8  6  9  0]
[0.1780757  0.17474999 0.17390694 0.17207369 0.17157653 0.168248440.1668652  0.16665359 0.16656876 0.16519257]
keras_recommended_book_ids深度学习推荐列表 [9137, 10548, 1, 10546, 2, 1024, 10, 10550, 7, 512]

2、算法原理

​ 使用Keras框架实现一个简单的深度学习推荐算法。Keras是建立在Python之上的高级神经网络API。Keras提供了一种简单、快速的方式来构建和训练深度学习模型。

​ 根据用户对书籍的评分表,使用Emmbeding深度学习训练得到一个模型,预测用户可能评分高的书籍,并把前5本推荐给用户。

Emmbeding是从离散对象(如书籍 ID)到连续值向量的映射。
这可用于查找离散对象之间的相似性。
Emmbeding向量是低维的,并在训练网络时得到更新。
设计一个模型,将用户id作为用户向量,物品id作为物品向量。
分别Emmbeding两个向量,再Concat连接起来,最后加上3个全连接层构成模型,进行训练。
使用adam优化器,用均方差mse来衡量预测评分与真实评分之间的误差

流程图:
在这里插入图片描述

3、算法流程

1、从数据库中读取评分表信息并转成二维数组
2、数据预处理,把用户id,物品id映射成顺序字典
3、统计用户数量、物品数量
4、划分训练集与测试集
5、构建Embedding模型并进行数据训练得到模型
6、调用模型预测评分高的物品并推荐给用户

4、主体代码

# -*- coding: utf-8 -*-"""
@contact: 微信 1257309054
@file: recommend_keras.py
@time: 2024/3/30 16:21
@author: LDC
使用Keras框架实现一个深度学习推荐算法
"""import os
import django
from django.conf import settingsos.environ["DJANGO_SETTINGS_MODULE"] = "book_manager.settings"
django.setup()import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymysql
from sklearn.model_selection import train_test_split
import warningswarnings.filterwarnings('ignore')from book.models import UserSelectTypes, LikeRecommendBook, Book, RateBook
from keras.layers import Input, Embedding, Flatten, Dot, Dense, Concatenate, Dropout
from keras.models import Modelfrom keras.models import load_modeldef get_select_tag_book(user_id, book_id=None):# 获取用户注册时选择的书籍类别各返回10门书籍category_ids = []us = UserSelectTypes.objects.get(user_id=user_id)for category in us.category.all():category_ids.append(category.id)unlike_book_ids = [d['book_id'] for d inLikeRecommendBook.objects.filter(user_id=user_id, is_like=0).values('book_id')]if book_id and book_id not in unlike_book_ids:unlike_book_ids.append(book_id)book_list = Book.objects.filter(tags__in=category_ids).exclude(id__in=unlike_book_ids).distinct().order_by("-like_num")[:10]return book_listdef get_data():'''从数据库获取数据'''conn = pymysql.connect(host=settings.DATABASE_HOST,user=settings.DATABASE_USER,password=settings.DATABASE_PASS,database=settings.DATABASE_NAME,charset='utf8mb4',use_unicode=True)sql_cmd = 'SELECT book_id, user_id,mark FROM rate_book'dataset = pd.read_sql(sql=sql_cmd, con=conn)conn.close()  # 使用完后记得关掉return datasetdef preprocessing(dataset):'''数据预处理'''book_val_counts = dataset.book_id.value_counts()book_map_dict = {}for i in range(len(book_val_counts)):book_map_dict[book_val_counts.index[i]] = i# print(map_dict)dataset["book_id"] = dataset["book_id"].map(book_map_dict)user_id_val_counts = dataset.user_id.value_counts()# 映射字典user_id_map_dict = {}for i in range(len(user_id_val_counts)):user_id_map_dict[user_id_val_counts.index[i]] = i# 将User_ID映射到一串字典dataset["user_id"] = dataset["user_id"].map(user_id_map_dict)return dataset, book_map_dict, user_id_map_dictdef train_model():'''训练模型'''dataset = get_data()  # 获取数据dataset, book_map_dict, user_id_map_dict = preprocessing(dataset)  # 数据预处理n_users = len(dataset.user_id.unique())  # 统计用户数量print('n_users', n_users)n_books = len(dataset.book_id.unique())  # 统计书籍数量print('n_books', n_books)# 划分训练集与测试集train, test = train_test_split(dataset, test_size=0.2, random_state=42)# 开始训练# creating book embedding pathbook_input = Input(shape=[1], name="Book-Input")book_embedding = Embedding(n_books + 1, 5, name="Book-Embedding")(book_input)Dropout(0.2)book_vec = Flatten(name="Flatten-Books")(book_embedding)# creating user embedding pathuser_input = Input(shape=[1], name="User-Input")user_embedding = Embedding(n_users + 1, 5, name="User-Embedding")(user_input)Dropout(0.2)user_vec = Flatten(name="Flatten-Users")(user_embedding)# concatenate featuresconc = Concatenate()([book_vec, user_vec])# add fully-connected-layersfc1 = Dense(128, activation='relu')(conc)Dropout(0.2)fc2 = Dense(32, activation='relu')(fc1)out = Dense(1)(fc2)# Create model and compile itmodel2 = Model([user_input, book_input], out)model2.compile('adam', 'mean_squared_error')history = model2.fit([train.user_id, train.book_id], train.mark, epochs=10, verbose=1)model2.save('regression_model2.h5')loss = history.history['loss']  # 训练集损失# 显示损失图像plt.plot(loss, 'r')plt.title('Training loss')plt.xlabel("Epochs")plt.ylabel("Loss")plt.show()print('训练完成')def predict(user_id, dataset):'''将预测评分高的图书推荐给该用户user_id'''model2 = load_model('regression_model2.h5')'''先拿到所有的图书索引ISBN,并去重成为book_data。再添加一个和book_data长度相等的用户列表user,不过这里的user列表中的元素全是1,因为我们要做的是:预测第1个用户对所有图书的评分,再将预测评分高的图书推荐给该用户。'''book_data = np.array(list(set(dataset.book_id)))user = np.array([user_id for i in range(len(book_data))])predictions = model2.predict([user, book_data])# 更换列->行predictions = np.array([a[0] for a in predictions])# 根据原array,取其中数值从大到小的索引,再只取前top10recommended_book_ids = (-predictions).argsort()[:10]print(recommended_book_ids)print(predictions[recommended_book_ids])return recommended_book_idsdef embedding_main(user_id, book_id=None, is_rec_list=False):'''1、获取数据、数据预处理2、划分训练集与测试集3、训练模型、模型评估4、预测user_id: 用户idbook_id: 用户已经评分过的书籍id,需要在推荐列表中去除is_rec_list: 值为True:返回推荐[用户-评分]列表,值为False:返回推荐的书籍列表'''dataset = get_data()  # 获取数据# print(dataset.head())if user_id not in dataset.user_id.unique():# 用户未进行评分则推荐注册时选择的图书类型print('用户未进行评分则推荐注册时选择的图书类型')if is_rec_list:return []# 推荐列表为空,按用户注册时选择的书籍类别各返回10门return get_select_tag_book(user_id, book_id)dataset, book_map_dict, user_id_map_dict = preprocessing(dataset)# user_id需要转换为映射后的user_id传到predict函数中predict_book_ids = predict(user_id_map_dict[user_id], dataset)  # 预测的书籍Idrecommend_list = []  # 最后推荐的书籍id# 把映射的值转为真正的书籍idfor book_id in predict_book_ids:for k, v in book_map_dict.items():if book_id == v:recommend_list.append(k)print('keras_recommended_book_ids深度学习推荐列表', recommend_list)if not recommend_list:# 推荐列表为空,且is_rec_list: 值为True:返回推荐[用户-评分]列表if is_rec_list:return []# 推荐列表为空,按用户注册时选择的书籍类别return get_select_tag_book(user_id, book_id)if is_rec_list:# 推荐列表不为空,且且is_rec_list: 值为True:返回推荐[用户-评分]列表return recommend_list# 过滤掉用户反馈过不喜欢的书籍unlike_book_ids = [d['book_id'] for d inLikeRecommendBook.objects.filter(user_id=user_id, is_like=0).values('book_id')]# 过滤掉用户已评分的数据already_mark_ids = [d['book_id'] for d in RateBook.objects.filter(user_id=user_id).values('book_id')]unrecommend = list(set(unlike_book_ids + already_mark_ids))if book_id and book_id not in unrecommend:unrecommend.append(book_id)book_list = Book.objects.filter(id__in=recommend_list).exclude(id__in=unrecommend).distinct().order_by("-like_num")return book_listif __name__ == '__main__':train_model() # 训练模型embedding_main(2) # 调用模型

输出:
在这里插入图片描述

http://www.lryc.cn/news/329098.html

相关文章:

  • MATLAB 点云随机渲染赋色(51)
  • 通过一篇文章让你完全掌握VS和电脑常用快捷键的使用方法
  • ChatGPT指引:借助ChatGPT撰写学术论文的技巧
  • 魔改一个过游戏保护的CE
  • rust嵌入式开发之await
  • UE4_碰撞_碰撞蓝图节点——Line Trace For Objects(对象的线条检测)
  • 抽象类和接口的简单认识
  • python-pytorch获取FashionMNIST实际图片标签数据集
  • 深入探秘Python生成器:揭开神秘的面纱
  • 红队攻防渗透技术实战流程:红队目标信息收集之批量信息收集
  • 【vue3学习笔记(二)】(第141-143节)初识setup;ref函数_处理基本类型;ref函数_处理对象类型
  • 若依框架学习使用
  • 蓝桥杯_数学模板
  • 稀碎从零算法笔记Day31-LeetCode:接雨水
  • 微前端的使用和注意事项 - qiankun
  • uniapp微信小程序消息订阅详解
  • git 查看文件夹结构树
  • 设计模式一详解
  • python 进程、线程、协程基本使用
  • SQLite3进行数据库各项常用操作
  • Debian GNU/Linux 安装docker与docker compose
  • 图片标注编辑平台搭建系列教程(2)——fabric.js简介
  • Debian linux版本下运行的openmediavault网盘 千兆网卡升级万兆
  • 前端 CSS 经典:grid 栅格布局
  • 多输入多输出通道
  • http响应练习—在服务器端渲染html(SSR)
  • C++(8): std::deque的使用
  • openwrt开发包含路由器基本功能的web问题记录
  • HarmonyOS ArkTS 骨架屏加载显示(二十五)
  • Ruoyi-Cloud-Plus_使用Docker部署分布式微服务系统_环境准备_001---SpringCloud工作笔记200