当前位置: 首页 > news >正文

更改chatglm认知

ChatGLM-Efficient-Tuning

下载源代码

下载ChatGLM-Efficient-Tuning
解压
在这里插入图片描述

创建虚拟环境

conda create --prefix=D:\CondaEnvs\chatglm6btrain python=3.10
cd D:\ChatGLM-Efficient-Tuning-main
conda activate D:\CondaEnvs\chatglm6btrain

安装所需要的包

pip install -r requirements.txt

在这里插入图片描述
在这里插入图片描述

修改测试数据

修改data下self_cognition.json
NAME和AUTHOR修改为自己想起的名字即可

训练

如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 bitsandbytes 库, 支持 CUDA 11.1 到 12.1.
查看cuda版本

nvcc --version

在这里插入图片描述
满足条件,安装windows下的LoRA

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl

在这里插入图片描述

开始训练

单 GPU 微调训练

# 选择gpu显卡二选一,看自己的操作系统
# linux
# CUDA_VISIBLE_DEVICES=0 
# windows
# set CUDA_VISIBLE_DEVICES=0
python src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset alpaca_gpt4_zh --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16

在这里插入图片描述
在这里插入图片描述
AttributeError: type object ‘PPODecorators’ has no attribute ‘empty_cuda_cache’. Did you mean: ‘empty_device_cache’?
在这里插入图片描述
修改trl版本trl==0.7.2

pip install trl==0.7.2

在这里插入图片描述
ImportError: cannot import name ‘top_k_top_p_filtering’ from ‘transformers’

pip install torch==1.13.1

在这里插入图片描述

pip install accelerate==0.21.0
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

ImportError: cannot import name ‘COMMON_SAFE_ASCII_CHARACTERS’ from 'charset_normalizer.constant

pip install chardet

cannot import name ‘LRScheduler’ from ‘torch.optim.lr_scheduler’

pip install transformers==4.29.1

在这里插入图片描述
在这里插入图片描述
下载数据集
https://huggingface.co/THUDM/chatglm-6b
在这里插入图片描述
在这里插入图片描述

python src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset self_cognition --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16 --model_name_or_path chatglm-6b

在这里插入图片描述
在这里插入图片描述
ValueError: Attempting to unscale FP16 gradients

pip install peft==0.4.0

在这里插入图片描述
Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
修改train_bash.py

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

在这里插入图片描述
或者设置一下环境变量

set KMP_DUPLICATE_LIB_OK=TRUE

在这里插入图片描述
在这里插入图片描述

测试训练结果

python src/cli_demo.py --model_name_or_path chatglm-6b --checkpoint_dir path_to_sft_checkpoint 

在这里插入图片描述
训练的结果好像并不理想
在这里插入图片描述
下载0.1.0版本试试

git lfs install
git clone -b v0.1.0 https://huggingface.co/THUDM/chatglm-6bpython src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset self_cognition --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16 --model_name_or_path chatglm6b010python src/cli_demo.py --model_name_or_path chatglm6b010 --checkpoint_dir path_to_sft_checkpoint 

在这里插入图片描述
在这里插入图片描述

LLaMA-Efficient-Tuning

下载源代码

尝试还是不行,尝试LLaMA-Efficient-Tuning
下载源代码解压,创建新的虚拟环境
在这里插入图片描述

conda create --prefix=D:\CondaEnvs\llama python=3.10
cd D:\LLaMA-Factory-main
conda activate D:\CondaEnvs\llama

安装所需要的包
在这里插入图片描述

# pytorch GPU版本
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install transformers==4.37.2
pip install datasets==2.14.3
pip install accelerate==0.27.2
pip install peft==0.9.0
pip install trl==0.8.1pip install -r requirements.txt
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl

如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。

# linux
# export USE_MODELSCOPE_HUB=1 
# Windows 
set USE_MODELSCOPE_HUB=1

接着即可通过指定模型名称来训练对应的模型

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \--model_name_or_path modelscope/Llama-2-7b-ms \... # 参数同下

开启网页

# set CUDA_VISIBLE_DEVICES=0 
python src/train_web.py

在这里插入图片描述

命令行使用

set CUDA_VISIBLE_DEVICES=0 
python src/train_bash.py --stage pt --do_train --model_name_or_path path_to_llama_model --dataset wiki_demo --finetuning_type lora --lora_target q_proj,v_proj --output_dir path_to_pt_checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16

qwen1.5-0.5b模型huggingface
qwen1.5-0.5b模型魔搭社区
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
预览命令

python src/train_bash.py --stage sft --do_train True --model_name_or_path Qwen/Qwen1.5-0.5B-Chat --finetuning_type lora --template qwen --dataset_dir data  --dataset identity,alpaca_gpt4_zh --cutoff_len 1024 --learning_rate 0.0002 --num_train_epochs 5.0 --max_samples 500 --per_device_train_batch_size 4  --gradient_accumulation_steps 4 --lr_scheduler_type cosine --max_grad_norm 1.0 --logging_steps 5 --save_steps 100 --warmup_steps 0 --optim adamw_torch --output_dir saves\Qwen1.5-0.5B-Chat\lora\test --fp16 True --lora_rank 8 --lora_alpha 16 --lora_dropout 0.1 --lora_target all --use_dora True --plot_loss True

NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
在这里插入图片描述

pip install fsspec==2023.9.2

在这里插入图片描述

训练完毕,刷新适配器然后加载
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

chatglm类似,它支持很多模型

白嫖手册
参考
参考
参考
ChatGLM2-6B
https://github.com/hiyouga/ChatGLM-Efficient-Tuning/tree/main
https://github.com/hiyouga/ChatGLM-Efficient-Tuning/blob/main/examples/alter_self_cognition.md
微调
https://github.com/THUDM/ChatGLM-6B/tree/main/ptuning

http://www.lryc.cn/news/328113.html

相关文章:

  • WPF 界面命令绑定(MVVM结构)
  • 常见手撕项目C++
  • 创建一个批处理作业来处理大量数据,例如从数据库中读取数据并进行处理
  • LeetCode 2.两数相加
  • 如何利用ChatGPT提升学术论文写作效率
  • LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略
  • 深入解析Oracle数据库中的WITH AS(CTE)原理
  • Linux 环境安装 Elasticsearch 8.X
  • Java零基础-集合:函数式接口
  • Redis Scan指令解析与使用示例
  • Qt+OpenGL入门教程(三)——绘制三角形
  • springcloud基本使用(搭建eureka服务端)
  • 第十二章:预处理命令
  • Game Audio Programming
  • 高风险IP来自哪里:探讨IP地址来源及其风险性质
  • 【每日跟读】常用英语500句(300~400)
  • 设计模式(7):装饰器模式
  • Flink SQL填坑记3:两个kafka数据关联查询
  • 移动平台实时动态多点光源方案:Cluster Light
  • 2024年03月CCF-GESP编程能力等级认证C++编程八级真题解析
  • (十一)图像的罗伯特梯度锐化
  • 实验九 枚举问题(运算模拟)
  • 2024 年 AI 辅助研发趋势:从研发数字化到 AI + 开发工具 2.0,不止于 Copilot
  • UE5数字孪生系列笔记(三)
  • ASR-LLM-TTS 大模型对话实现案例;语音识别、大模型对话、声音生成
  • 主干网络篇 | YOLOv8更换主干网络之EfficientNet
  • Web开发-Django学习笔记
  • 关于深度学习的 PyTorch 项目如何上手分析?从什么地方切入?
  • JavaEE企业开发新技术4
  • CSS使用JS变量