当前位置: 首页 > news >正文

【c语言】详解操作符(上)

1. 操作符的分类

2. 原码、反码、补码

整数的2进制表示方法有三种,即原码、反码、补码

有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位是被当做符号位其余都是数值位。

符号位都是用0表示“正”,用1表示“负”。

例:分别写出1、-1的2进制

int a = 1;
int b = -1;

其中a、b都是整形变量,是4个字节,32bit位,那么a、b的2进制为:

a:00000000000000000000000000000001

b:10000000000000000000000000000001

正整数的原码、反码、补码都相同

负数的三种表示方法各有不同

原码:直接将数值按照正负数形式翻译成2进制得到的就是原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码加1就可以得到补码。

补码得到原码也是可以使用取反加1的操作。

例:分别写出-10的原码、反码、补码

原码:10000000000000000000000000001010

反码:11111111111111111111111111110101

补码:11111111111111111111111111110110

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

  1. 简化计算:使用补码可以将符号位和数值位统一处理,这样无论是正数还是负数,都可以用同一套逻辑来进行加减运算。由于计算机的CPU只有加法器,没有减法器,通过补码可以将减法运算转换为加法运算,从而简化了硬件设计。
  2. 避免歧义:补码的表示方法确保了0的编码只有一个,不会出现两个不同的编码对应同一个数0的情况。这对于避免数据表示上的歧义非常重要。
  3. 提高存储效率:原码、反码和补码是二进制数的三种不同表示方法。原码是最直观的表示方法,但它在表示负数时需要额外的符号位,并且在进行运算时需要分别处理正负号。反码是对原码的改进,它将负数的符号位保持不变,数值位取反。而补码则是在反码的基础上加1,它不仅解决了0的表示问题,还可以通过补码直接进行加减运算,无需额外的硬件电路。
  4. 方便逻辑电路实现:计算机由逻辑电路组成,逻辑电路通常只有两种状态,即开关的接通与断开,刚好可以表示成‘1’和‘0’。因此,计算机只存储二进制数据,而补码作为一种二进制表示方法,非常适合于计算机的逻辑电路实现。

3. 移位操作符(移动的是二进制位)

<< 左移操作符

>> 右移操作符 

注:移位操作符的操作数只能是整数。

3.1 左移操作符

左移操作符有一个乘以2的n次方的效果(n为<<后面的数字)

移位规则:左边抛弃,右边补0.

例1:

上图中a的补码为:

00000000000000000000000000000110

其中b = a << 1,那么在a的补码的基础上抛弃左边的1位,然后在右边补上一个0,可得b的补码:

00000000000000000000000000001100

例2:

a的补码为:11111111111111111111111111111010

b得到的补码:11111111111111111111111111110100

3.2 右移操作符

左移操作符有一个除以2的n次方的效果(n为>>后面的数字)

移位规则:

1. 逻辑右移:左边用0填充,右边丢弃。

2. 算术右移,左边用原值的符号位(原值是正数就用0,是负数就用1)填充,右边丢弃。 

注:是逻辑右移还是算术右移是取决于编译器的实现,常见的编译器都是算术右移。 

算术右移: 

 a的补码为:11111111111111111111111111111010

b得到的补码:11111111111111111111111111111101

 4. 位操作符:&、|、^、~

1. &                     按位与

2.  |                      按位或

3. ^                      按位异或

4. ~                     按位取反

注:它们的操作数必须是整数 

4.1 &

运算规则:

&左右两个数的补码中有0就取0,两个同时为1才取1

例:

3的补码为 :0000000000000000000000000000011

-5的补码为:11111111111111111111111111111011

c得到的补码为:0000000000000000000000000000011

4.2 |

运算规则:

|左右两个数的补码中有1就取1,两个同时为0才取0

例:

3的补码为 :0000000000000000000000000000011

-5的补码为:11111111111111111111111111111011

c得到的补码为:11111111111111111111111111111011

4.3 ^ 

运算规则:

相同为0,相异位1. 

3的补码为 :0000000000000000000000000000011

-5的补码为:11111111111111111111111111111011

c得到的补码为:11111111111111111111111111111000

例题:不使用临时变量的情况下,交换a和b的值

由^的运算规则我们可以知道当^两边的数相同时,所得到的结果为0,而0^a=a,所以我们利用这个规律我们就可以在不使用临时变量的情况下,交换a和b的值,如下图:

4.4  ~

运算结果为~右边的数+1然后取相反数,例如:~1 = -2,~-1 = 0

运算规则:

对~右边的数的2进制按位取反

0的2进制为: 0000000000000000000000000000000

b得到的补码为:11111111111111111111111111111111

5练习:

练习1:

编写代码实现:求一个整数存储在内存中补码中1的个数。

法1:

由&的运算规则我们可以知道a&1=1的式子成立时,就说明a的补码最右边的数为1,从这里可以知道,依次将a的补码的32个数依次移动到最右边(这里可以使用右移操作符(>>)移动),然后统计有几个符合a&1=1,就可以求出这个整数存储在内存中补码中1的个数。

以13为例,求13在内存中补码中1的个数:

13的补码:
00000000000000000000000000001101
1的补码:
00000000000000000000000000000001

法2: 

int main()
{int n = 0;scanf("%d", &n);int count = 0;while (n){n = n & (n - 1);count++;}printf("%d\n", count);return 0;
}

思考题:

如何判断一个数是否是2的次方数?

2的n次方数的二进制中只有1个1,而式子n&(n-1)就可以直接把这个1去掉了,所以要想判断一个数是否是2的次方数,只需要判断等式n&(n-1)== 0是否成立就可以了。

练习2:

二进制位置1或者置0

编码代码将13二进制序列的第5位修改为1,然后再改为0

13的2进制序列:

00000000000000000000000000001101

将5位置为1后:

00000000000000000000000000011101

将5位置为0后:

00000000000000000000000000001101

int main()
{int a = 13;//将5位置为1a |= 1 << 4;printf("%d\n", a);//将5位置为0a &= ~(1 << 4);printf("%d\n", a);return 0;
}

6. 逗号表达式

exp1,exp2,exp3,....,expN

用逗号隔开的表达式就是逗号表达式。

逗号表达式,从左向右依次执行,整个表达式的结果是最后一个表达式的结果。

例1:计算下列表达式c中的结果:

int main(){int a = 1, b = 2;int c = (a > b, a = b + 10, a, b = a + 1);printf("%d\n", c);return 0;
}

表达式的运行过程为:a>b(为假,但不影响表达式的结果) -> a=b + 10 -> 12 -> b = a + 1 = 13

因为最终决定表示结果的是表达式:b = a + 1,所以最终的结果为:13

 例2:

逗号表达式在if语句中真正起判断作用的是最后一个表达式 。

7. 下标访问[ ]、函数调用( ) 

7.1 [ ] 下标引用操作符

操作数:一个数组名 + 一个索引值(下标)

7.2 函数调用操作符

接受一个或多个操作数:第一个操作数是函数名,剩下的操作数就是传给函数的参数。

#include<stdio.h>
int main()
{printf("hello world!\n");//( )函数调用操作符return 0;
}

http://www.lryc.cn/news/325397.html

相关文章:

  • VR全景展示:传统制造业如何保持竞争优势?
  • 2.7、创建列表(List)
  • solr functionquery函数查询自定义函数实现
  • 如何将 Parallels虚拟机 安装或者迁移到 移动硬盘 or U盘?
  • 大型网站集群管理负载均衡
  • JAVA使用POI实现Excel单元格合并-02
  • 深入了解 Linux 中的 MTD 设备:/dev/mtd* 与 /dev/mtdblock*
  • 2、Spring CLI安装
  • 数据库备份工具(实现数据定时覆盖)
  • 测试环境搭建整套大数据系统(十二:挂载磁盘到hadoop环境)
  • Spring事务核心:声明式事务注解式事务
  • AcWing 1015. 摘花生
  • Dalle-3、Sora、Stable Diffusion 3 掀起AIGC新浪潮
  • Unity 视频组件 VideoPlayer
  • RSTP环路避免实验(华为)
  • Arduino IDE工程代码多文件编程和中文设置
  • 【微服务】Eureka(服务注册,服务发现)
  • windows上ssh设置代理,直接访问公司内网
  • C++ union用法
  • JavaSE_运算符 案例分析
  • 15、Spring Cloud Alibaba Sentinel实现熔断与限流
  • Linux logout命令教程:如何安全地退出Linux会话(附实例详解和注意事项)
  • 数据结构——顺序表(C语言版)
  • Knative 助力 XTransfer 加速应用云原生 Serverless 化
  • 服务器离线配置vscode连接,conda虚拟环境
  • 各种需要使用的方法-->vue/微信小程序/layui
  • 360奇酷刷机 360刷机助手 QGDP360手机QGDP刷机
  • 2299. 强密码检验器 II
  • 跟着cherno手搓游戏引擎【29】Batch简单合批
  • 粘包/半包及解决方案