当前位置: 首页 > news >正文

Spark Rebalance hint的倾斜的处理(OptimizeSkewInRebalancePartitions)

背景

本文基于Spark 3.5.0
目前公司在做小文件合并的时候用到了 Spark Rebalance 这个算子,这个算子的主要作用是在AQE阶段的最后写文件的阶段进行小文件的合并,使得最后落盘的文件不会太大也不会太小,从而达到小文件合并的作用,这其中的主要原理是在于三个规则:OptimizeSkewInRebalancePartitions,CoalesceShufflePartitions,OptimizeShuffleWithLocalRead,这里主要说一下OptimizeSkewInRebalancePartitions规则,CoalesceShufflePartitions的作用主要是进行文件的合并,是得文件不会太小,OptimizeShuffleWithLocalRead的作用是加速shuffle fetch的速度。

结论

OptimizeSkewInRebalancePartitions的作用是对小文件进行拆分,使得罗盘的文件不会太大,这个会有个问题,如果我们在使用Rebalance(col)这种情况的时候,如果col的值是固定的,比如说值永远是20240320,那么这里就得注意一下,关于OptimizeSkewInRebalancePartitions涉及到的参数spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,spark.sql.adaptive.advisoryPartitionSizeInBytes,spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor 这些值配置,如果这些配置调整的不合适,就会导致写文件的时候有可能只有一个Task在运行,那么最终就只有一个文件。而且大大加长了整个任务的运行时间。

分析

直接到OptimizeSkewInRebalancePartitions中的代码中来:

  override def apply(plan: SparkPlan): SparkPlan = {if (!conf.getConf(SQLConf.ADAPTIVE_OPTIMIZE_SKEWS_IN_REBALANCE_PARTITIONS_ENABLED)) {return plan}plan transformUp {case stage: ShuffleQueryStageExec if isSupported(stage.shuffle) =>tryOptimizeSkewedPartitions(stage)}}

如果我们禁用掉对rebalance的倾斜处理,也就是spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled为false(默认是true),那么就不会应用此规则,那么如果Col为固定值的情况下,就只会有一个Task进行文件的写入操作,也就只有一个文件,因为一个Task会拉取所有的Map的数据(因为此时每个maptask上的hash(Col)都是一样的,此时只有一个reduce task去拉取数据),如图:

在这里插入图片描述
假如说hash(col)为0,那实际上只有reduceTask0有数据,其他的ReduceTask1等等都是没有数据的,所以最终只有ReduceTask0写文件,并且只有一个文件。

在看合并的计算公式,该数据流如下:

 tryOptimizeSkewedPartitions||\/optimizeSkewedPartitions||\/ShufflePartitionsUtil.createSkewPartitionSpecs||\/ShufflePartitionsUtil.splitSizeListByTargetSize

splitSizeListByTargetSize方法中涉及到的参数解释如下 :

  • 参数 sizes: Array[Long] 表示属于同一个reduce任务的maptask任务的大小数组,举例 sizes = [100,200,300,400]
    表明该任务有4个maptask,0表示maptask为0的所属reduce的大小,1表示maptask为1的所属reduce的大小,依次类推,图解如下:

在这里插入图片描述
比如说reduceTask0的从Maptask拉取的数据的大小分别是100,200,300,400.

  • 参数targetSize 为 spark.sql.adaptive.advisoryPartitionSizeInBytes的值,假如说是256MB
  • 参数smallPartitionFactor为spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor 的值,默认是0.2
    这里有个计算公式:
    def tryMergePartitions() = {// When we are going to start a new partition, it's possible that the current partition or// the previous partition is very small and it's better to merge the current partition into// the previous partition.val shouldMergePartitions = lastPartitionSize > -1 &&((currentPartitionSize + lastPartitionSize) < targetSize * MERGED_PARTITION_FACTOR ||(currentPartitionSize < targetSize * smallPartitionFactor ||lastPartitionSize < targetSize * smallPartitionFactor))if (shouldMergePartitions) {// We decide to merge the current partition into the previous one, so the start index of// the current partition should be removed.partitionStartIndices.remove(partitionStartIndices.length - 1)lastPartitionSize += currentPartitionSize} else {lastPartitionSize = currentPartitionSize}}。。。while (i < sizes.length) {// If including the next size in the current partition exceeds the target size, package the// current partition and start a new partition.if (i > 0 && currentPartitionSize + sizes(i) > targetSize) {tryMergePartitions()partitionStartIndices += icurrentPartitionSize = sizes(i)} else {currentPartitionSize += sizes(i)}i += 1}tryMergePartitions()partitionStartIndices.toArray

这里的计算公式大致就是:从每个maptask中的获取到属于同一个reduce的数值,依次累加,如果大于targetSize就尝试合并,直至到最后一个maptask
可以看到tryMergePartitions有个计算公式:currentPartitionSize < targetSize * smallPartitionFactor,也就是说如果当前maptask的对应的reduce分区数据 小于 256MB*0.2 = 51.2MB 的话,也还是会合并到前一个分区中去,如果smallPartitionFactor设置过大,可能会导致所有的分区都会合并到一个分区中去,最终会导致一个文件会有几十GB(也就是targetSize * smallPartitionFactor`*shuffleNum),
比如说以下的测试案例:

    val targetSize = 100val smallPartitionFactor2 = 0.5// merge last two partition if their size is not bigger than smallPartitionFactor * targetval sizeList5 = Array[Long](50, 50, 40, 5)assert(ShufflePartitionsUtil.splitSizeListByTargetSize(sizeList5, targetSize, smallPartitionFactor2).toSeq ==Seq(0))val sizeList6 = Array[Long](40, 5, 50, 45)assert(ShufflePartitionsUtil.splitSizeListByTargetSize(sizeList6, targetSize, smallPartitionFactor2).toSeq ==Seq(0))

这种情况下,就会只有一个reduce任务运行。

http://www.lryc.cn/news/322835.html

相关文章:

  • Vue 3中实现基于角色的权限认证实现思路
  • Visual Studio 2022进行文件差异比较
  • 1.2 编译型语言和解释型语言的区别
  • C语言-常量
  • 开源的OCR工具基本使用:PaddleOCR/Tesseract/CnOCR
  • vue3实现输入框短信验证码功能---全网始祖
  • [C#]winformYOLO区域检测任意形状区域绘制射线算法实现
  • 个人网站制作 Part 14 添加网站分析工具 | Web开发项目
  • 数据按设定单位(分辨率)划分的方法
  • Ubuntu 搭建gitlab服务器,及使用repo管理
  • QT(19)-QNetworkRequest
  • 基于Vue的社区旧衣回收利用系统的设计与实现
  • 【网站项目】291校园疫情防控系统
  • win git filter-repo教程
  • Redis相关操作高阶篇--集群搭建
  • JNDI注入原理及利用IDEA漏洞复现
  • 大数据,或称巨量资料
  • windows上打开redis服务闪退问题处理
  • 分布式锁简单实现
  • BM23 二叉树的前序遍历
  • 阿里云代理仓库地址
  • nginx的location规则与其他功能
  • 用汇编进行字符串匹配
  • 回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测
  • mysql数据库的索引管理
  • VUE+Vant实现H5组织架构选人选公司组件
  • 【以图搜图】GPUNPU适配万物识别模型和Milvus向量数据库
  • 迷茫了!去大厂还是创业?
  • Qt源码分析: QEventLoop实现原理
  • 痛失offer的八股