当前位置: 首页 > news >正文

进阶二叉树

目录

二叉树

二叉搜索树

二叉搜索树的定义

二叉搜索树的操作 

哈夫曼树

哈夫曼树的定义

哈夫曼树的构造

哈夫曼树的性质

 平衡二叉树

平衡二叉树的定义:

平衡二叉树的插入调整

1.LL插入/LL旋转

2.RR插入/RR旋转

3.LR插入/LR旋转

4.RL插入/RL旋转


二叉树

二叉搜索树

二叉搜索树的定义

二叉搜索树也称二叉排序树或二叉查找树,树上任何一个结点的值,比起其左子树的值都要大,比其右子树的值都要小,并且其左右子树都是二叉搜索树

二叉搜索树的操作 

1.插入:同上一篇二叉树的插入一样,插入值为x的结点

2.删除:分为三种情况:

(1)删除的结点没有子结点,就将删除的结点的父节点指向NULL

(2)删除的结点有一个子结点,就将删除的结点的父节点指向删除结点的子节点

(3)删除的节点有两个子节点,就将左子树最大的结点或右子树最小的结点替换删除的·结点

3.查找:

在树中查找值为x的结点,并返回其所在位置的地址

二叉搜索树:

最大元素一定在最右分支的端结点上

最小元素一定在最左分支的端结点上

哈夫曼树

哈夫曼树的定义

给定n个权值作为n个叶子结点,构造一颗二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值w_{k},从根结点到每个叶子结点的长度为l_{k}则每个叶子结点的带权路径长度之和就是:WPL=\sum_{k=1}^{n}w_{k}\cdot l_{k}

 

l_{k}:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

 

哈夫曼树的构造

每次把权值最小的两棵二叉树合并,合并得到一个新的结点,其权值是合并的两个结点的权值之和。

哈夫曼树的性质

1.没有度为1的结点

2.哈夫曼树的任意非叶结点互换后,任然是哈夫曼树

3.同一权值可能存在不同构造的哈夫曼树

 平衡二叉树

平衡二叉树的定义:

平衡二叉树又被称做AVL树

任何一棵不空的平衡二叉树,其任意一结点的左右子树的高度差不能超过1,左右子树的高度差也被称做平衡因子(BF),BF(T)=hL-hR,hL和hR分别代表T树的左右子树高度,|BF(T)|<=1

不同的结点插入顺序,会导致生成不一样的树。则树的深度和平均查找长度ASL也会不同。

ASL = (同一层结点数量 * 结点的层次) / 结点总数

构成平衡二叉树所需的最少结点数:n_{h}=n_{h-1}+n_{h-2}+1n_{h}表示高度为h的平衡二叉树的最少结点数,等于前两层最少节点数之和再加1。其中n1=1,n2=2(n>=1)。

平衡二叉树的插入调整

插入的结点被称为“麻烦结点/破坏结点”。

一个结点其子树被插入新结点,该节点被陈称为“发现者/被破坏者”。

1.LL插入/LL旋转

插入的“破坏节点”,在“被破坏节点”的左子树的左子树上,因而叫LL插入。需要LL旋转(左单旋)。

 LL旋转:被破坏结点为A,被破坏结点的右子树记为,被破坏结点的左子树的根节点为B,B的左、右子树记为、。将B结点提升为新的根节点,A作为B结点的右儿子,还作为A结点的右子树;还作为B结点的左子树;变为A结点的左子树。

2.RR插入/RR旋转

插入的“破坏节点”,在“被破坏节点”的右子树的右子树上,因而叫RR插入。需要RR旋转(右单旋)。

RR旋转:被破坏结点为A,被破坏结点的左子树记为,被破坏结点的右子树的根节点为B,B的左、右子树记为、。将B结点提升为新的根节点,A作为B结点的左儿子,还作为A结点的左子树;还作为B结点的右子树;变为A结点的右子树。

3.LR插入/LR旋转

插入的“破坏节点”,在“被破坏节点”的左子树的右子树上,因而叫LR插入。需要LR旋转。

LR旋转:被破坏节点为A,A的左子树的根节点为B,A的右子树为;B的左子树为,B的右子树的根节点为C;C的左、右子树记为、。将C结点提升为新的根节点,B作为C结点的左儿子,A作为C的右儿子;还作为B的左子树,作为B的右子树;作为A的左子树,还作为A的右子树。

4.RL插入/RL旋转

插入的“破坏节点”,在“被破坏节点”的右子树的左子树上,因而叫RL插入。需要RL旋转。

RL旋转: 被破坏节点为A,A的左子树为,A的右子树为的根节点为B;B的左子树的根节点为C,B的右子树为;C的左、右子树记为、。将C结点提升为新的根节点,A作为C结点的左儿子,B作为C的右儿子;还作为A的左子树,作为A的右子树;作为B的左子树,还作为B的右子树。

http://www.lryc.cn/news/322563.html

相关文章:

  • 无人机拦截
  • CSDN 编辑器设置图片缩放和居中
  • 有哪些工具可以替代Gitbook?这篇文章告诉你
  • 小迪安全43WEB 攻防-通用漏洞任意文件下载删除重装敏感读取黑白审计
  • 大模型提示学习样本量有玄机,自适应调节方法好
  • Redis监控工具
  • 低代码表单设计器为企业数字转型强劲赋能!
  • 【C#】Conventions(惯例)最佳实践和准则
  • vue3中使用cesium
  • arduino ide 开发esp8266注意事项
  • RTC协议与算法基础 - RTP/RTCP
  • c语言游戏实战(8):飞机大作战
  • docker 部署k8s相关命令操作
  • 使用Tesseract识别中文 并提高精度
  • 基于Jenkins + Argo 实现多集群的持续交付
  • 关于javascript数字精度丢失的解决办法
  • 每日一题 第二十一期 洛谷 组合的输出
  • JavaScript 面试题
  • java输入语句scanner
  • Python从入门到精通秘籍十一
  • WRF模型教程(ububtu系统)-WPS(WRF Pre-Processing System)概述
  • C语言向C++过渡的基础知识(一)
  • GEE遥感云大数据林业应用典型案例及GPT模型应用
  • macOS Ventura 13.6.5 (22G621) Boot ISO 原版可引导镜像下载
  • 数据结构面试常见问题之Insert or Merge
  • perl 用 XML::LibXML 解析 Freeplane.mm文件,XML文件
  • Spring Cloud Alibaba微服务从入门到进阶(七)(服务容错-Sentinel)
  • Arduino RP2040 + SSD1306 I2C OLED +LittleFS存储GBK字库实现中文显示
  • 代码随想录算法训练营第day53|1143.最长公共子序列 、 1035.不相交的线、 53. 最大子序和 动态规划
  • 【Flutter学习笔记】10.2 组合现有组件