当前位置: 首页 > news >正文

Bert模型输出:last_hidden_state转换为pooler_output

1. BERT模型的输出

在BERT模型中,last_hidden_statepooler_output是两个不同的输出。

(1) last_hidden_state:

    last_hidden_state是指BERT模型中最后一个隐藏层的隐藏状态。它是一个三维张量,其形状为[batch_size, sequence_length, hidden_size]。其中,batch_size是输入序列的批量大小,sequence_length是输入序列的长度,hidden_size是BERT模型的隐藏层大小(通常为768)。
 last_hidden_state保存了输入序列中每个token对应的隐藏状态,这些隐藏状态经过多层的Transformer编码器处理得到。在多数任务中,可以直接使用这个张量进行下游任务的训练或者特征提取。

(2) pooler_output:
     pooler_output是指BERT模型中经过一个特殊的池化层后得到的句子级别表示。它是一个二维张量,其形状为[batch_size, hidden_size]。
pooler_output是通过对BERT模型最后一个隐藏层的第一个token([CLS] token)的隐藏状态应用一个全连接层得到的。这个全连接层的参数在预训练过程中被学习得到。pooler_output可以看作是整个输入序列的压缩表示,通常用于句子级别的任务,如文本分类。

       总的来说,last_hidden_state提供了序列中每个token的隐藏状态信息,而pooler_output提供了整个句子的语义表示。

2. last_hidden_state转换为pooler_output

     在BERT模型中,last_hidden_state是最后一个隐藏层的隐藏状态,而pooler_output是通过应用一个全连接层(通常是一个线性变换加上激活函数)到last_hidden_state中的特殊token([CLS] token)得到的。

      首先从last_hidden_state中提取出每个样本的第一个token(即[CLS] token)的隐藏状态。然后,我们定义了一个线性层pooler_layer,将隐藏状态映射到与BERT模型的隐藏大小相同的空间。最后,我们应用了tanh激活函数,得到 pooler_output,这是整个句子的语义表示。这个pooler_output可以用于句子级别的任务,例如文本分类。

      请确保poor_layer的权重是正确初始化的。通常情况下,应该使用预训练的BERT模型的权重来初始化它。可以在实例化poor_layer时进行这样的初始化。如果使用的是transformers库,它提供了加载预训练BERT模型并提取pooler_output的方法。要使用预训练的BERT模型的权重来初始化线性层 pooler_layer,可以从预训练的BERT模型中加载权重,并将这些权重用作 pooler_layer的初始权重。通常情况下,会使用Hugging Face的 transformers库来加载预训练的BERT模型。

       以下是一个示例代码,演示如何使用transformers库来加载预训练的BERT模型,并使用其中的权重来初始化 pooler_layer:

from transformers import BertModel, BertTokenizer#加载预训练的Bert模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
extractor = BertModel.from_pretrained('bert-base-uncased')#text是原始文本数据
x = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)x = extractor(**x)#获取hidden_state
x1= x['last_hidden_state']# 定义一个线性层,将最后一个隐藏层的第一个token的隐藏状态映射到pooler_output
pooler_layer = nn.Linear(768, 768).to(device)# 使用BERT模型的权重来初始化pooler_layer的权重
with torch.no_grad():pooler_layer.weight.copy_(extractor.pooler.dense.weight)pooler_layer.bias.copy_(extractor.pooler.dense.bias)# 获取CLS token的隐藏状态(最后隐藏层的第一个token),取出每个样本的第一个token的隐藏状态
cls_token_state = x1[:, 0, :].to(device)## 应用线性层并使用激活函数
x1 = torch.tanh(pooler_layer(cls_token_state)).to(device)#直接获取pooler_output
x2=x['pooler_output'].to(device)

       在这个示例中,我们首先从预训练的BERT模型中加载了tokenizer和BERT模型。然后,我们创建了一个与BERT模型隐藏大小相同的线性层 pooler_layer。最后,我们使用`bert_model.pooler.dense`中的权重来初始化`pooler_layer`的权重。这样,`pooler_layer`就被正确初始化了,并可以用于将`last_hidden_state`变换为`pooler_output`。最后x1和x2的结果相同。

http://www.lryc.cn/news/322271.html

相关文章:

  • Docker Compose 基本语法
  • 【算法集训】基础算法:贪心
  • Centos7部署单节点MongoDB(V4.2.25)
  • 隐私计算笔记(1)
  • 查询方法需要使用事务吗?
  • 剑指offer面试题40 数组中只出现一次的数字
  • gitLab server version 13.12.1 is not supported
  • 如何在 iPhone 上使用蓝牙鼠标
  • matlab simulink 电力系统同步发电机励磁系统的建模与仿真
  • AI新工具(20240320) AI创作一首属于自己的音乐; 轻松制作具有透明背景的高质量图像
  • IT服务ITIL4 认证:助力企业数字化转型的必杀技!
  • 微软聘请了谷歌DeepMind的联合创始人
  • JavaMySQL高级一(下)
  • HCIA复习
  • 5G里面NR,gNB,en-gNB,ng-eNB是什么意思
  • android 网络检测简单方法
  • 列表(list)篇(二)
  • Python的反射机制
  • Python数学建模-2.9Matplotlib库
  • 【MySQL】数据库的基础概念
  • Linux:离线安装 jdk-8(配置Java环境)
  • 【DP】第十三届蓝桥杯省赛C++ B组《李白打酒加强版》(C++)
  • 数据结构试卷第九套
  • 【Linux第三课-基础开发工具的使用】yum、vim、gcc/g++编译器、gdb、Make/Makefile编写、进度条程序、git命令行简单操作
  • Redis:ClassCastException【bug】
  • JSON 配置文件
  • 由浅到深认识Java语言(6):控制流程语句
  • lv17 安防监控项目实战 3
  • 文本处理基本方法
  • Java面试题(Spring篇)