当前位置: 首页 > news >正文

Kubernetes Pod 水平自动伸缩(HPA)

Pod 自动扩缩容

之前提到过通过手工执行kubectl scale命令和在Dashboard上操作可以实现Pod的扩缩容,但是这样毕竟需要每次去手工操作一次,而且指不定什么时候业务请求量就很大了,所以如果不能做到自动化的去扩缩容的话,这也是一个很麻烦的事情。如果Kubernetes系统能够根据Pod当前的负载的变化情况来自动的进行扩缩容就好了,因为这个过程本来就是不固定的,频繁发生的,所以纯手工的方式不是很现实。

幸运的是Kubernetes为我们提供了这样一个资源对象:Horizontal Pod Autoscaling(Pod水平自动伸缩),简称HPAHAP通过监控分析RC或者Deployment控制的所有Pod的负载变化情况来确定是否需要调整Pod的副本数量,这是HPA最基本的原理。
在这里插入图片描述

HPAkubernetes集群中被设计成一个controller,我们可以简单的通过kubectl autoscale命令来创建一个HPA资源对象,HPA Controller默认30s轮询一次(可通过kube-controller-manager的标志--horizontal-pod-autoscaler-sync-period进行设置),查询指定的资源(RC或者Deployment)中Pod的资源使用率,并且与创建时设定的值和指标做对比,从而实现自动伸缩的功能。

当你创建了HPA后,HPA会从Heapster或者用户自定义的RESTClient端获取每一个一个Pod利用率或原始值的平均值,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值并进行相应的操作。目前,HPA可以从两个地方获取数据:

  • Heapster:仅支持CPU使用率
  • 自定义监控:我们到后面的监控的文章中再给大家讲解这部分的使用方法

现在来介绍从Heapster获取监控数据来进行自动扩缩容的方法,所以首先我们得安装Heapster,前面我们在kubeadm搭建集群的文章中,实际上我们已经默认把Heapster相关的镜像都已经拉取到节点上了,所以接下来我们只需要部署即可,我们这里使用的是Heapster 1.4.2 版本的,前往Heapstergithub页面:

https://github.com/kubernetes/heapster

我们将该目录下面的yaml文件保存到我们的集群上,然后使用kubectl命令行工具创建即可,另外创建完成后,如果需要在Dashboard当中看到监控图表,我们还需要在Dashboard中配置上我们的heapster-host

同样的,我们来创建一个Deployment管理的Nginx Pod,然后利用HPA来进行自动扩缩容。定义DeploymentYAML文件如下:(hap-deploy-demo.yaml)

---
apiVersion: apps/v1
kind: Deployment
metadata:name: hpa-nginx-deploylabels:app: nginx-demo
spec:revisionHistoryLimit: 15selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginxports:- containerPort: 80

然后创建Deployment

$ kubectl create -f hpa-deploy-demo.yaml

现在我们来创建一个HPA,可以使用kubectl autoscale命令来创建:

$ kubectl autoscale deployment hpa-nginx-deploy --cpu-percent=10 --min=1 --max=10
deployment "hpa-nginx-deploy" autoscaled
···
$ kubectl get hpa                                                         
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       0%        1         10        13s

此命令创建了一个关联资源 hpa-nginx-deploy 的HPA,最小的 pod 副本数为1,最大为10。HPA会根据设定的 cpu使用率(10%)动态的增加或者减少pod数量。

当然出来使用kubectl autoscale命令来创建外,我们依然可以通过创建YAML文件的形式来创建HPA资源对象。如果我们不知道怎么编写的话,可以查看上面命令行创建的HPAYAML文件:

$ kubectl get hpa hpa-nginx-deploy -o yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:creationTimestamp: 2017-06-29T08:04:08Zname: nginxtestnamespace: defaultresourceVersion: "951016361"selfLink: /apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/nginxtestuid: 86febb63-5ca1-11e7-aaef-5254004e79a3
spec:maxReplicas: 5 //资源最大副本数minReplicas: 1 //资源最小副本数scaleTargetRef:apiVersion: apps/v1kind: Deployment //需要伸缩的资源类型name: nginxtest  //需要伸缩的资源名称targetCPUUtilizationPercentage: 50 //触发伸缩的cpu使用率
status:currentCPUUtilizationPercentage: 48 //当前资源下pod的cpu使用率currentReplicas: 1 //当前的副本数desiredReplicas: 2 //期望的副本数lastScaleTime: 2017-07-03T06:32:19Z

好,现在我们根据上面的YAML文件就可以自己来创建一个基于YAMLHPA描述文件了。

现在我们来增大负载进行测试,我们来创建一个busybox,并且循环访问上面创建的服务。

$ kubectl run -i --tty load-generator --image=busybox /bin/sh
If you don't see a command prompt, try pressing enter.
/ # while true; do wget -q -O- http://172.16.255.60:4000; done

下图可以看到,HPA已经开始工作。

$ kubectl get hpa
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       29%        1         10        27m

同时我们查看相关资源hpa-nginx-deploy的副本数量,副本数量已经从原来的1变成了3。

$ kubectl get deployment hpa-nginx-deploy
NAME        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hpa-nginx-deploy   3         3         3            3           4d

同时再次查看HPA,由于副本数量的增加,使用率也保持在了10%左右。

$ kubectl get hpa
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       9%        1         10        35m

同样的这个时候我们来关掉busybox来减少负载,然后等待一段时间观察下HPADeployment对象

$ kubectl get hpa     
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       0%        1         10        48m
$ kubectl get deployment hpa-nginx-deploy
NAME        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hpa-nginx-deploy   1         1         1            1           4d

可以看到副本数量已经由3变为1。

不过当前的HPA只有CPU使用率这一个指标,还不是很灵活的,在后面的文章中我们来根据我们自定义的监控来自动对Pod进行扩缩容。


http://www.lryc.cn/news/32010.html

相关文章:

  • 钉钉、企业微信和飞书向“钱”看
  • 网上购物网站的设计
  • 【Java学习笔记】8.Java 运算符
  • RHCSA-使用命令管理文件(3.6)
  • socket聊天室--socket的建立
  • Raft图文详解
  • 春季出游,学会这些功能,让你旅途更舒心
  • 【华为OD机试真题java、python、c++、jsNode】简单的自动曝光【2022 Q4 100分】(100%通过)
  • react学习笔记-1:创建项目
  • vulnhub five86-2
  • OpenCV入门(四)快速学会OpenCV3画基本图形
  • 【MAC OS 命令行】Redis的安装、启动和停止。就是如此简单
  • Leetecode 661. 图片平滑器
  • 剑指 Offer II 020. 回文子字符串的个数
  • Python实现多键字典
  • 【python socket】实现websocket服务端
  • PANGO的CFG那些事
  • 路由协议(OSPF、ISIS、BGP)实验配置
  • Python可变对象与不可变对象的浅拷贝与深拷贝
  • 滑模控制(Sliding mode control)快速入门
  • golang的垃圾回收详解
  • 线上负载过高排查(top/vmstat/ifstat/free/df)
  • Java的注解(Annotation)
  • 信息系统项目管理师:配置管理
  • web餐饮开源程序
  • 28个案例问题分析---027---单表的11个Update接口--MyBatis
  • 大数据开发治理平台 DataWorks
  • Xshell的下载、使用、配置【ssh、telnet、串口】
  • C++回顾(七)—— 面向对象模型
  • 开源监控服务uptime-kuma