当前位置: 首页 > news >正文

使用timm库的一些知识点

timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。
在这里插入图片描述

使用timm库创建模型时,如何确定模型的名字

使用timm.list_models方法,找到timm支持的模型

import timmif __name__ == '__main__':all_pretrained_models_available = timm.list_models(pretrained=True)print(all_pretrained_models_available)for i in all_pretrained_models_available:print(i)

运行结果:
很多,这里只列出一部分啊!

resnet152
resnet152d
resnet200d
resnetblur50
resnetrs50
resnetrs101
resnetrs152
resnetrs200
resnetrs270
resnetrs350
resnetrs420
resnetv2_50
resnetv2_50x1_bit_distilled
resnetv2_50x1_bitm
resnetv2_50x1_bitm_in21k
resnetv2_50x3_bitm
resnetv2_50x3_bitm_in21k
resnetv2_101
resnetv2_101x1_bitm
resnetv2_101x1_bitm_in21k
resnetv2_101x3_bitm
resnetv2_101x3_bitm_in21k
resnetv2_152x2_bit_teacher
resnetv2_152x2_bit_teacher_384
resnetv2_152x2_bitm
resnetv2_152x2_bitm_in21k
resnetv2_152x4_bitm
resnetv2_152x4_bitm_in21k
resnext26ts

创建模型

执行代码

self.model = timm.create_model('resnetv2_50', pretrained, num_classes=12, global_pool="avg")

加载预训练权重

timm模型加载预训练权重,均改为从huggingface自动下载。由于众所周知的原因,我们不能下载。我们可以选择加载其他版本的预训练权重。代码:

model_path = '/Users/admin/Downloads/pytorch_model.bin'  # 替换为你的pytorch_model.bin文件路径# 加载模型权重
state_dict = torch.load(model_path, map_location=torch.device('cpu'))# 创建模型实例并加载权重
model = timm.create_model("eva_giant_patch14_336.clip_ft_in1k", pretrained=False)
model.load_state_dict(state_dict)# 修改输出类别数
model.reset_classifier(num_classes)  

特征提取

使用timm库进行特征提取是一个常见的任务,尤其是在处理图像数据时。timm(Torch Image Models)是一个基于PyTorch的库,它包含了一系列预训练的深度学习模型,这些模型可以很方便地用于特征提取、迁移学习等任务。

以下是一个使用timm进行特征提取的基本示例:

首先,确保你已经安装了timm库:

pip install timm

然后,你可以使用以下Python代码进行特征提取:

import torch
from timm import create_model, list_models
from torchvision import transforms
from PIL import Image# 选择一个预训练模型
model_name = 'resnet50'
pretrained_model = create_model(model_name, pretrained=True)# 切换到评估模式,关闭dropout和batch normalization层
pretrained_model.eval()# 定义预处理变换
transform = transforms.Compose([transforms.Resize(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载图像
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path).convert('RGB')# 应用预处理变换
image_tensor = transform(image).unsqueeze(0)  # 添加batch维度# 如果有GPU,将图像和数据模型转移到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_tensor = image_tensor.to(device)
pretrained_model = pretrained_model.to(device)# 提取特征
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源features = pretrained_model.forward_features(image_tensor)  # 获取特征# 将特征转移到CPU(如果需要)并展平
features = features.cpu().numpy().flatten()print(features)

在这个例子中,我们首先创建了一个预训练的ResNet-50模型。然后,我们将模型设置为评估模式,并定义了一个预处理变换,该变换将图像缩放到256x256,中心裁剪到224x224,转换为张量,并应用归一化。

接下来,我们加载了一张图像,并应用预处理变换。然后,我们检查是否有可用的GPU,并将图像张量和模型转移到相应的设备上。

最后,我们使用forward_features方法(这是timm库特有的,用于直接获取模型的卷积层输出,而不包括全连接层)来提取图像的特征。提取的特征被转移到CPU上,并展平为一个一维数组。

注意:不同的模型可能有不同的方法来获取特征。例如,一些模型可能没有forward_features方法,而是需要你手动选择特定的层来获取特征。在这种情况下,你需要查阅该模型的文档或源代码来了解如何正确提取特征。

http://www.lryc.cn/news/317897.html

相关文章:

  • 一种基于宏和serde_json实现的rust web中统一返回类
  • 每周一算法:A*(A Star)算法
  • 爬虫练习:获取某网站的房价信息
  • 第一个C语言hello world
  • 【Python】新手入门学习:详细介绍依赖倒置原则(DIP)及其作用、代码示例
  • 嵌入式驱动学习目录索引(更新中)
  • ruoyi-vue插件集成websocket
  • 华为ce12800交换机m-lag(V-STP模式)配置举例
  • STM32第九节(中级篇):RCC——时钟树讲解(第一节)
  • c/c++字符串处理标准库 string 介绍
  • HarmonyOS NEXT应用开发之深色模式适配
  • Go微服务: 基于Go Micro框架实现微服务调用
  • 大模型prompt提示词如何调优?
  • 【Python/crawl】如何使用Python爬虫将一系列网页上的同类图片下载到本地
  • Postgresql 连接数查看,死锁问题解决
  • ssm蛋糕甜品商城系统(程序+文档+数据库)
  • 算法空间复杂度计算
  • C++ lambda函数个人理解
  • SwiftUI的context Menu
  • 【数据结构】树与堆 (向上/下调整算法和复杂度的分析、堆排序以及topk问题)
  • 安装CDH平台的服务器磁盘满了,磁盘清理过程记录
  • 《互联网的世界》第七讲-能源
  • 前端代码整洁与规范之CSS篇
  • 在【IntelliJ IDEA】中配置【Tomcat】【2023版】【中文】【图文详解】
  • 【SSM】任务列表案例 基本CRUD SSM整合
  • 基于微信小程序的校园跑腿小程序,附源码
  • 网络学习:9个计算机的“网络层”知识点
  • web项目的搭建
  • C++for语句
  • 最新基于R语言lavaan结构方程模型(SEM)技术