当前位置: 首页 > news >正文

343. 整数拆分

343. 整数拆分

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

  • 2 <= n <= 58

思路:(动态规划)

法一:

对于正整数 n,当 n ≥ 2 时,可以拆分成至少两个正整数的和。令 x 是拆分出的第一个正整数,则剩下的部分是 n − x,n − x 可以不继续拆分,或者继续拆分成至少两个正整数的和。由于每个正整数对应的最大乘积取决于比它小的正整数对应的最大乘积,因此可以使用动态规划求解。

创建数组 dp,其中 dp[i] 表示将正整数 i 拆分成至少两个正整数的和之后,这些正整数的最大乘积。特别地,0 不是正整数,1 是最小的正整数,0 和 1 都不能拆分,因此 dp[0] = dp[1] = 0。

当 i ≥ 2 时,假设对正整数 i 拆分出的第一个正整数是 j(1 ≤ j < i),则有以下两种方案:

  • 将 i 拆分成 j 和 i − j 的和,且 i − j 不再拆分成多个正整数,此时的乘积是 j × (i − j);
  • 将 i 拆分成 j 和 i − j 的和,且 i − j 继续拆分成多个正整数,此时的乘积是 j × dp[i − j]。

因此,当 j 固定时,有 dp[i] = max⁡(j × (i − j), j × dp[i − j])。由于 j 的取值范围是 1 到 i − 1,需要遍历所有的 jjj 得到 dp[i] 的最大值,因此可以得到状态转移方程如下:

dp[i]=max⁡1≤j<i{max⁡(j×(i−j),j×dp[i−j])}d p[i]=\max _{1 \leq j<i}\{\max (j \times(i-j), j \times d p[i-j])\} dp[i]=1j<imax{max(j×(ij),j×dp[ij])}

最终得到 dp[n] 的值即为将正整数 n 拆分成至少两个正整数的和之后,这些正整数的最大乘积。

法二:

由于分解成正整数的乘积最大,若分解的正整数有1,不会使乘积变大,所以分解的正整数大于等于2;

  • 又至少分解2个正整数,当 n = 2,或 n = 3 时,最大的乘积分别为1和2;
  • n > 4 时,分解的最小整数为2,否则只会变小;

举一些栗子:

4 = 2 + 2 , 2 * 2 = 4
5 = 2 + 3,  2 * 3 = 6
6 = 3 + 3 , 3 * 3 = 9
7 = 2 + 2 + 3 = 2 + 5 
8 = 2 + 3 + 3 = 2 + 6
9 = 4 + 2 + 3 = 2 + 7
10 = 3 + 3 + 4 = 3 + 7
  • 创建数组 dp,其中 dp[i] 表示将正整数 i 拆分成至少两个正整数的和之后,这些正整数的最大乘积。
  • 由以上可知分解的都可表示为 2 或 3 与另一个数 j,最大乘积就是2 或 3 乘以另一个数的最大乘积dp[j].

代码:(Java)

法一:

public class IntegerBreak {public static void main(String[] args) {// TODO Auto-generated method stubint n = 10;System.out.println(integerBreak(n));}int[] dp = new int[n + 1];dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i - 1; j++) {dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j)));}}return dp[n];
}

法二:

public class IntegerBreak {public static void main(String[] args) {// TODO Auto-generated method stubint n = 10;System.out.println(integerBreak(n));}public static int integerBreak(int n) {if(n / 2 < 2) {return n - 1;}int[] dp = new int[n + 1];dp[2] = 2;dp[3] = 3;for(int i = 4; i <= n; i++) {dp[i] = Math.max(2*dp[i-2], 3*dp[i-3]);}return dp[n];}
}

运行结果:

在这里插入图片描述

复杂度分析:

时间复杂度O(n2)O(n^2)O(n2),其中 n 是给定的正整数。对于从 2 到 n 的每一个整数都要计算对应的 dp 值,计算一个整数对应的 dp 值需要 O(n) 的时间复杂度,因此总时间复杂度是 O(n2)。(法二时间复杂度为:O(n))

空间复杂度:O(n),其中 n 是给定的正整数。创建一个数组 dp,其长度为 n+1

注:仅供学习参考!

题目来源:力扣。

http://www.lryc.cn/news/31722.html

相关文章:

  • SCAFFOLD: Stochastic Controlled Averaging for Federated Learning学习
  • 第十四届蓝桥杯三月真题刷题训练——第 3 天
  • 变量的四大存储类型static extern auto register
  • JavaScript基础五、语句
  • 青龙面板399乐园
  • 自动化注册组件
  • 【JS代码优化一】分支优化篇
  • 软件测试-接口测试-补充
  • Spring笔记(5):Beans自动装配
  • Spark+Vue+Springboot 协同过滤额音乐推荐大数据深度学习项目
  • JDBC的实现(IDEA版)
  • 人员摔倒识别预警系统 人员跌倒检测算法 yolov7
  • Spring-Cloud-Gateway集成Nacos如何做负载均衡?
  • 【数据挖掘与商务智能决策】第四章 逻辑回归模型
  • 滚动升级回滚
  • 2023/3/6 VUE - 组件传值【通信】方式
  • MedCalc v20.217 医学ROC曲线统计分析参考软件
  • 欢乐消除开心假日协议解密
  • Android Service知识
  • axios的get请求传入数组参数后端无法接收的问题
  • 奖金发放-课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)
  • 第十四届蓝桥杯第三期模拟赛 【python】
  • Python——函数(重点内容)
  • 2023年如何在Google做外贸
  • Linux操作系统学习(线程池)
  • JVM运行时数据区—Java虚拟机栈
  • gitlab中文社区
  • 深度学习-第T2周——彩色图片分类
  • GNU C编译器扩展关键字:__attribute__
  • C++基础 | 从C到C++快速过渡