当前位置: 首页 > news >正文

深度学习-第T2周——彩色图片分类

深度学习-第T2周——彩色图片分类

  • 深度学习-第P1周——实现mnist手写数字识别
    • 一、前言
    • 二、我的环境
    • 三、前期工作
      • 1、导入依赖项并设置GPU
      • 2、导入数据集
      • 3、归一化
      • 4、可视化图片
    • 四、构建简单的CNN网络
    • 五、编译并训练模型
      • 1、设置超参数
      • 2、编写训练函数
    • 六、预测
    • 七、模型评估

深度学习-第P1周——实现mnist手写数字识别

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.5
  • 编译器:colab在线编译
  • 深度学习环境:Tensorflow

三、前期工作

1、导入依赖项并设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]tf.config.experimental.set_memory_growth(gpu0, True)tf.config.set_visible_device([gpu0], "GPU")

2、导入数据集

使用dataset下载MNIST数据集,并划分训练集和测试集

使用dataloader加载数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3、归一化

数据归一化作用

  • 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
  • 加快学习算法的准确性
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

4、可视化图片

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize = (20, 10))
for i in range(20):
plt.subplot(5, 10, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap = plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])plt.show()

在这里插入图片描述

四、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • 卷积层:通过卷积操作对输入图像进行降维和特征抽取,有卷积,填充,步幅三个部分。
    • 卷积:假设输入图片为n * n,通过k * k的卷积核,那么输出维度为(n-k+1)*(n-k+1)。
    • 填充:假设输入图片为n * n,通过k * k的卷积核, 且填充为p,那么输出维度为(n-k+2p+1)*(n-k+2p+1)
    • 步幅: 假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
  • 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
    • 与卷积层一样,假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
#二、构建简单的CNN网络
# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取,输出维度为
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([layers.Conv2D(32, (3, 3), activation = 'relu', input_shape= (32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.Flatten(),layers.Dense(64, activation = 'relu'),layers.Dense(10)
])model.summary()
#以上为简单的tf八股模板,可以看B站的北大老师曹健的tensorflow笔记

在这里插入图片描述

五、编译并训练模型

1、设置超参数

#这里设置优化器,损失函数以及metrics
model.compile(#设置优化器为Adam优化器optimizer = 'adam',#设置损失函数为交叉熵损失函数loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),metrics = ['accuracy']
)

2、编写训练函数

history = model.fit(train_images,train_lables,epochs = 10,validation_data = (test_images, test_lables)
)

在这里插入图片描述

六、预测

plt.imshow(test_images[1])

在这里插入图片描述

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])

在这里插入图片描述

七、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label = 'accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1]) #设置y轴刻度
plt.legend(loc = 'lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images, test_labels, verbose = 2)
#verbose = 0不输出日志信息, = 0 输出进度条记录, = 2 输出一行记录

在这里插入图片描述

print(test_acc)

在这里插入图片描述

http://www.lryc.cn/news/31692.html

相关文章:

  • GNU C编译器扩展关键字:__attribute__
  • C++基础 | 从C到C++快速过渡
  • 【C++】仿函数 -- priority_queue
  • 盘一盘C++的类型描述符(一)
  • Peppol的发展史和基本框架
  • Linux-GCC介绍+入门级Makefile使用
  • iOS(一):Swift纯代码模式iOS开发入门教程
  • IDEA+Python+Selenium+360浏览器自动化测试
  • 运输层概述及web请求
  • python与pycharm从零安装
  • 叠氮试剂943858-70-6,Azidobutyric acid NHS ester,叠氮-C3-活性酯
  • pycharm激活虚拟环境时报错:无法加载文件activate.ps1,因为在此系统上禁止运行脚本,Windows10系统
  • 刷题小抄4-数组
  • Hbase安装
  • 面向对象设计模式:结构型模式之代理模式
  • CCF大数据专家委员会十周年纪念庆典纪实:拥抱数字时代,展望科技未来
  • Qt学习3-Qt Creator四则运算计算器(哔站视频学习记录)
  • 学习 Python 之 Pygame 开发魂斗罗(九)
  • 最简单的SpringBoot+MyBatis多数据源实现
  • Spring Boot 3.0系列【8】核心特性篇之SpringApplication
  • Nginx的搭建与核心配置
  • Java学习笔记 --- jQuery
  • 华为OD机试题,用 Java 解【字符串加密】问题
  • 软聚类算法:模糊聚类 (Fuzzy Clustering)
  • Java Web 实战 02 - 多线程基础篇(1)
  • C/C++开发,无可避免的多线程(篇三).协程及其支持库
  • 高级信息系统项目管理(高项 软考)原创论文项目背景合集
  • 锁屏面试题百日百刷-Hive篇(十一)
  • 一看就懂,等保2.0工作流程这么做
  • Kerberos 域委派攻击之非约束性委派