当前位置: 首页 > news >正文

Linux-信号3_sigaction、volatile与SIGCHLD

文章目录

  • 前言
  • 一、sigaction
    • __sighandler_t sa_handler;
    • __sigset_t sa_mask;
  • 二、volatile关键字
  • 三、SIGCHLD
    • 方法一
    • 方法二


前言

本章内容主要对之前的内容做一些补充。


一、sigaction

#include <signal.h>
int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);

之前我们学过signal来对信号进行捕捉,sigaction也是一个对信号进行捕捉的系统接口函数,不过sigaction要相对复杂一些。

参数 int signum 是要捕捉的信号编号。

参数struct* sigaction 在这里作为输入型参数,是提供给我们的一个结构体指针类型,这里的结构体名和函数名相同。

参数struct sigaction *oldact 在这里作为输出型参数。

那么struct sigaction 里面有什么呢?

struct sigaction{/* Signal handler.  */
#ifdef __USE_POSIX199309union{/* Used if SA_SIGINFO is not set.  */__sighandler_t sa_handler;/* Used if SA_SIGINFO is set.  */void (*sa_sigaction) (int, siginfo_t *, void *);}__sigaction_handler;
# define sa_handler	__sigaction_handler.sa_handler
# define sa_sigaction	__sigaction_handler.sa_sigaction
#else__sighandler_t sa_handler;
#endif/* Additional set of signals to be blocked.  */__sigset_t sa_mask;/* Special flags.  */int sa_flags;/* Restore handler.  */void (*sa_restorer) (void);};

我们今天主要对函数体内部的sa_handler和sa_mask进行讨论

__sighandler_t sa_handler;

typedef void __signalfn_t(int);
typedef __signalfn_t *__sighandler_t;

根据__sighandler_t的定义,我们可以知道其本质是一个函数指针,所以这里的我们就可以知道其实本质也是像signal一样使用回调函数来进行信号的捕捉。

__sigset_t sa_mask;

typedef __sigset_t sigset_t;

之前我们在学习sigprocmask和sigaddset等信号集接口函数的时候有过接触sigset_t,那么这里的sa_mask是什么呢?

先提出一个观点,在一个信号被处理(递达)过程中,如果同一个信号再次被发送且进入pending表,那么OS是怎样处理的? OS的处理方式是block(阻塞)相同信号,不再重复递达,等到处理完正在被处理的信号再根据情况决定。 而sa_mask在这里的作用就是可以根据其信号集的有效信号,在signum信号正在被处理时,同时阻塞sa_mask的有效信号和其本身信号。

示例代码如下

#include<iostream>
#include<cstdio>
#include<signal.h>
#include<unistd.h>void ShowPending()
{sigset_t pending;sigemptyset(&pending);for (int i = 1; i <= 31; i++){sigpending(&pending);// 通过sigismember来打印我们的pending信号集std::cout << sigismember(&pending, i);}std::cout << std::endl;
}void catchSig(int signum)
{std::cout << "捕捉到" << signum << "信号!" << std::endl; int count = 0;while(1){ShowPending();count++;if(count == 50) break;sleep(5);}
}
int main()
{std::cout << "pid: " << getpid() << std::endl;//1.定义struct sigaction类型struct sigaction act , oldact;//2.mask信号集初始化sigset_t mask;sigemptyset(&mask);//3.mask信号集添加1号,2号,3号, 4号,5号,6号作为有效信号sigaddset(&mask,1);sigaddset(&mask,2);sigaddset(&mask,3);sigaddset(&mask,4);sigaddset(&mask,5);sigaddset(&mask,6);//4.修改act中的数据act.sa_handler = catchSig;act.sa_mask = mask;//5.调用sigactionsigaction(2, &act , &oldact);while(1) sleep(1);return 0;
}

运行结果
在这里插入图片描述

二、volatile关键字

我们之前的学习过程中,也提到过编译器会进行优化,例如我们之前讲的拷贝构造和右值引用都有提到过,而volatile主要解决关于编译器优化所导致的问题。

是的,编译器优化在少数情况下是会造成一些问题的。

而Linux中的gcc编译器是有几种不同程度的优化方案的

-O -O0 -O1 -O2 -O3 -Os -Ofast -Og

在使用gcc或g++命令时,上面的选项从左到右,编译时优化程度依次变大。

示例代码如下

#include<iostream>
#include<cstdio>
#include<signal.h>
#include<unistd.h>int flag = 0;void catchSig(int signum)
{std:: cout << flag ;flag = 1;std::cout << "->" << flag <<std::endl; 
}int main()
{signal(2, catchSig);while(1){if(flag == 1) break;;}std::cout << "程序正常退出" << std::endl;return 0;
}

这段代码如果使用

g++ -o mysignal mysignal.cc -std=c++11

进行编译

结果则是
在这里插入图片描述

这段代码如果使用

g++ -o mysignal mysignal.cc -std=c++11 -O3

进行编译

结果则是
在这里插入图片描述
程序不会自动退出。

这是因为在-O3的优化程度下,编译器检测默认执行流不会修改flag的数据,所以这里的cpu寄存器一直储存着原有的flag值0,导致在判断flag时,一直使用寄存器中的0在判断,导致循环无法退出。

现在我们使用volatile来试试

#include<iostream>
#include<cstdio>
#include<signal.h>
#include<unistd.h>volatile int flag = 0;void catchSig(int signum)
{std:: cout << flag ;flag = 1;std::cout << "->" << flag <<std::endl; 
}int main()
{signal(2, catchSig);while(1){if(flag == 1) break;;}std::cout << "程序正常退出" << std::endl;return 0;
}

在这里插入图片描述
这个时候程序就正常推出了,所以这里volatile的意思就是让告诉编译器不要对flag进行优化,要让寄存器看到内存中的数据!


三、SIGCHLD

SIGCHLD 在子进程停止或者退出时可能收到。

所以我们再学习几种进程等待的方法。

方法一

#include <iostream>
#include <cstdio>
#include <signal.h>
#include <unistd.h>int main()
{signal(SIGCHLD, SIG_IGN);pid_t id = fork();if(id == 0){//子进程sleep(10);exit(0);}//父进程while(1);return 0;
}

将SIGCHLD信号的处理方式变为忽略。
在这里插入图片描述
子进程没有僵尸,而是成功回收。

方法二

#include <iostream>
#include <cstdio>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
void catchCHLD(int signum)
{std::cout << "捕捉到SIGCHLD信号!" << std::endl;int pid = 0;while((pid = waitpid(0,nullptr,WNOHANG)) > 0){std::cout << "成功等待" << pid << "号进程" << std::endl;}
}int main()
{signal(SIGCHLD, catchCHLD);pid_t id = fork();if(id == 0){//子进程sleep(10);exit(0);}//父进程while(1);return 0;
}

在这里插入图片描述
也同样可以成功回收!

http://www.lryc.cn/news/313506.html

相关文章:

  • STM32 | STM32时钟分析、GPIO分析、寄存器地址查找、LED灯开发(第二天)
  • Python常用语法汇总(一):字符串、列表、字典操作
  • Token的奥秘--一起学习吧之token
  • FlinkCDC快速搭建实现数据监控
  • 应急布控球远程视频监控方案:视频监控平台EasyCVR+4G/5G应急布控球
  • 3.6 C语言和汇编语言混合编程 “每日读书”
  • 利用“定时执行专家”循环执行BAT、VBS、Python脚本——含参数指定功能
  • 【算法集训】基础算法:模拟
  • 基于SSM的房客源信息管理系统设计与实现
  • 常见数据类型
  • 基于vue的联通积分商城数据可视化APP设计与实现
  • 2024年flink面试真题(一)
  • Java面试挂在线程创建后续,不要再被八股文误导了!创建线程的方式只有1种
  • JavaEE面试题
  • 探索macOS上的最佳MySQL客户端工具
  • [Android] MediaPlayer SDK API glance
  • 原始手写helloworld并打jar包允许
  • maven 的安装与配置(Command ‘mvn‘ not found)修改配置文件后新终端依旧无法识别到 mvn 命令
  • Pycharm无法粘贴外部文本问题
  • 学习Java的第四天
  • 【Javaweb】【瑞吉外卖】登录功能plus--拦截器filterinterceptors实现
  • 关于 Runes 协议及「公开铭刻」发行机制的拓展讨论
  • chkdsk修复会造成文件丢失吗?chkdsk数据丢失还能恢复吗
  • Hypermesh2019快捷键大全
  • CSS布局——Flexbox基础使用
  • Kubernetes(K8s):容器化应用的航空母舰
  • Java配置49-nginx 反向代理 sftp 服务器
  • Qt添加VTK并绘制图形
  • VsCode搭建Spring Boot项目环境
  • (黑马出品_05)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式