当前位置: 首页 > news >正文

如何构建Hive数据仓库Hive 、数据仓库的存储方式 以及hive数据的导入导出

什么是Hive

hive是基于Hadoop的一个数据仓库工具,可以将结构化数据映射为一张表。
hive支持使用sql语法对存储的表进行查询
(本质上是把sql转成mapreduce的任务执行)

Hive有三个特点:

  • hive所存储的数据是放在HDFS文件系统中的
  • hive的底层实现是mapreduce
  • 这些任务是运行在Yarn上的

如何构建Hive数据仓库

什么是数据仓库

官方定义:数据仓库是面向主题的、集成的、不可更新的、随时间的变化而不断变化的,这些特点决定了数据仓库的系统设计不能采用同开发传统的OLTP数据库一样的设计方法。

(1)安装hive
常规配置,这里不记录安装过程

唯一需要注意的地方是有一个hive.metastroe.dirname属性需要配置
配置的值是hive元数据的存储路径,一般为hdfs文件系统的路径。

安装完成后,需要在mysql中建立配置中指定的数据库并初始化Hive源数据库

(2)安装完成之后就可以启动hive

Hive数据仓库的储存方式

Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。所以往Hive表里面导入数据只是简单的将数据移动到表所在的目录中 。

Hive主要有四种数据模型:

  • Table(表)
  • External Table(外部表)
  • Partition(分区)
  • Bucket(桶)

(1)表的概念和关系型数据库的表很像,只不过hive中的表的本质是结构化数据,存储在hdfs文件系统的目录中。这个目录就是前文着重要求的metastore的位置,文件就是存在那里的。

(2)外部表顾名思义,就是数据不存放在所属目录中,而是存放在别处。

(3)分区,这个很重要,我觉得分区的存在就是数据仓库与关系型数据库最大的区别,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。
(4)桶:对指定的列计算其hash,根据hash值切分数据,目的是为了并行,每一个桶对应一个文件(注意和分区的区别)。

Hive的元数据

Hive的元数据一般都是放在mysql中的,这样的原因是因为Hive的元数据需要不断的更新、修改,而HDFS系统中的文件是多读少改的,不能将Hive的元数据存储在HDFS中。

hive数据的导入导出

导入

导入的方式有两种

  • 从本地导入数据
  • 从HDFS导入数据

(1)从本地向hive导入数据
语法:

load data local
inpath '/opt/dataaplace/...'
(overwrite) into table tablename 
partition (partitionfield = xxx);

load data:表示导入数据

local:表示从本地加载数据到hive表;否则从HDFS加载数据到hive表

partition (…)表示指定导入数据的分区字段

overwrite表示覆盖写入,如果没有则是追加写入

例子:

load data local
inpath '/opt/data/StudentId.txt'
overwrite into table Student;

(2) 加载HDFS文件到hive中
语法:

load data 
inpath '/root/data/...'
(overwrite) into table tablename 
partition (partitionfield = xxx);

不加local默认从hdfs中导入数据

hive创建表

create table tablename
(
id int,
name string
)
row format delimited fields terminated by ',';

前半部分和mysql的建表语句一样,后半部分是指定表的分隔符。

  • 插入数据
insert into table tablename values(1,"zhangsan"),(2,"lisi");

insert into:以追加数据的方式插入到表

insert overwrite into table tablename values(1,"zhangsan"),(2,"lisi");

加了overwrite 则是覆盖原来的表然后写入

  • 根据查询结果覆盖写入
insert overwrite table tablename values(3,"wangwu")
select id,name from tablename where id = 1;
  • 创建表时通过Location指定加载数据路径
create table tablename(id int, name string
)
row format delimited fields terminated by '\t'
location '/root/hive/wirehouse/...';

location 指定的是hdfs中的路径

数据导出

参考博客:添加链接描述

# 1)将查询的结果导出到本地(只能overwrite,不能into,否则会报错)
insert overwrite local directory '/opt/module/hive/datas/export/student' select * from student;# 2)将查询的结果格式化导出到本地(所有的insert语句都会跑MR)
insert overwrite local directory '/opt/module/hive/datas/export/student1' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'select * from student;# 3)将查询的结果导出到HDFS上(没有local)(是复制,原来的文件还在)
insert overwrite directory '/user/qinjl/student2'ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from student;

注意:insert 导出,导出的目录不用自己提前创建,hive会帮我们自动创建,但是由于是overwrite,所以导出路径一定要写具体,否则很可能会误删数据。

  • Hadoop命令也可以导出数据到本地
 dfs -get /user/hive/warehouse/student/student.txt/opt/module/hive/datas/export/student3.txt;
  • Hive Shell 命令导出
hive_dir/bin/hive -e 'select * from ods.order_info;' >> 
/opt/module/datas/order_info.txt
  • hive表也可以通过export 导入到hdfs上
export table ods.user_info to /user/hive/warehouse/user_info;
http://www.lryc.cn/news/313419.html

相关文章:

  • 【Linux】软件管理器yum和编辑器vim
  • 怎么才能确定螺栓是拧紧了——SunTorque智能扭矩系统
  • 西门子S120故障报警F30003的解决办法总结
  • 探索vue框架的世界: 内部、外部样式和内联样式动态绑定的方法
  • 代码随想录算法训练营第三十八天|动态规划|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
  • 运维知识点-JBoss
  • HarmonyOS—配置编译构建信息
  • Chrome浏览器好用的几个扩展程序
  • Enzo Life Sciences Cortisol(皮质醇) ELISA kit
  • 面试经典150题 -- 二分查找 (总结)
  • 蓝牙耳机怎么选择比较好?2024年热门机型推荐大揭秘!
  • 强制Unity崩溃的两个方法
  • 中间件 | Redis - [big-key hot-key]
  • STM32基础--自己构建库函数
  • 网站被插入虚假恶意链接怎么办?
  • ThreeJs限制模型拖动的范围
  • 关于JVM的小总结(待补充)
  • day37 贪心算法part6
  • 38女神节:剧情热梗小游戏新品!预售1折秒杀,手慢无
  • 岩土工程监测仪器振弦采集仪的发展历程与国内外研究现状
  • Git 掌握
  • 面试题之——事务失效的八大情况
  • 一些硬件知识(六)
  • 前端React篇之哪些方法会触发 React 重新渲染?重新渲染 render 会做些什么?
  • PHP伪协议是什么?
  • npm使用
  • 美国国家安全局(NSA)和美国政府将Delphi/Object Pascal列为推荐政府机构和企业使用的内存安全编程语言
  • C++中的内部类
  • 华为“仓颉”不是中文编程:中文编程早有所属,势如破竹
  • Python的基本数据类型