当前位置: 首页 > news >正文

代码随想录算法训练营Day52 | 300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

300.最长递增子序列

这题的重点是DP数组的定义,子序列必须以nums[i]为最后一个元素,这样dp数组中后面的元素才能与前面的元素进行对比

1、DP数组定义:dp[i]表示以nums[i]为最后一个元素的最长递增子序列长度

2、DP数组初始化:全部初始化为1(子序列最少也有自身一个)

3、递推公式与 i 前所有元素进行对比,如果nums[i] > nums[j],那么更新dp[i]

        · 基本——dp[j]:位置 j 处的最长递增子序列

        · 新增—— +1:算上nums[i],多了一个递增元素

        · 最后的递推公式:dp[i]取较大值:dp[i] = std::max(dp[i], dp[j] + 1)

4、遍历顺序:从前向后遍历

int lengthOfLIS(vector<int>& nums) {// dp[i]表示以nums[i]为最后一个元素的最长递增子序列长度// 全部初始化为1(子序列最少也有自身一个)vector<int> dp(nums.size(), 1);int ans = 1;for (int i = 1; i < nums.size(); ++i) {// 与i之前的所有元素做比较for (int j = 0; j < i; ++j) {// 不断更新dp[i],寻找以nums[i]为最后一个元素的最长递增子序列长度if (nums[i] > nums[j])dp[i] = std::max(dp[i], dp[j] + 1);}// 记录过程中的最长子序列if (dp[i] > ans)ans = dp[i];}return ans;
}

 674.最长连续递增序列

 整体和上一题差不多,但由于要求是“连续”子序列,所以简单不少。主要差别在遍历过程中,为了保持序列连续,只需要与前一个元素对比即可(上一题需要与前面所有元素对比)。

int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for (int i = 1; i < nums.size(); ++i) {// 只需要与 i - 1 比较if (nums[i] > nums[i - 1]) {dp[i] = dp[i - 1] + 1;ans = std::max(ans, dp[i]);}}return ans;
}// 压缩空间写法
iint findLengthOfLCIS(vector<int>& nums) {int dp = 1;int ans = 1;for (int i = 1; i < nums.size(); ++i) {if (nums[i] > nums[i - 1])ans = std::max(ans, ++dp);elsedp = 1;}return ans;
}

718.最长重复子数组

写暴力超时了,剪剪枝可能有机会过?

int findLength0(vector<int>& nums1, vector<int>& nums2) {// 尝试用哈希表来加快索引// key:值// value:出现值的下标unordered_map<int, vector<int>> mapNum2;for (int i = 0; i < nums2.size(); ++i) {auto it = mapNum2.find(nums2[i]);if (it == mapNum2.end())mapNum2.insert({ nums2[i], {i} });elseit->second.push_back(i);}vector<int> dp(nums1.size(), 0);int ans = 0;// 暴力两层循环 + 最内层判断重复子序列长度for (int i = 0; i < nums1.size(); ++i) {auto it = mapNum2.find(nums1[i]);if (it == mapNum2.end())continue;ans = std::max(ans, 1);for (int k : it->second) {int len = 1;for (int j = 1; i + j < nums1.size() && k + j < nums2.size(); ++j) {if (nums1[i + j] == nums2[k + j]) {dp[i + j] = std::max(dp[i + j], ++len);ans = std::max(ans, dp[i + j]);}elsebreak;}}}return ans;
}

动规写法:

这题重点也是DP数组的定义:两个序列所以DP数组用二维

1、DP数组定义:两个维度表示两个数组的索引,dp[i][j]表示以nums1[i - 1]nums2[j - 1]为结尾的两个字符串的最长重复子数组长度

        (子序列问题一般都定义为 i - 1j - 1,目的是精简初始化的步骤)

2、DP数组初始化:首行与首列元素无意义,但为了递推公式将其初始化为0,其余元素随意

3、递推公式:如果nums1[i - 1] == nums2[j - 1],那么dp[i][j] = dp[i - 1][j - 1] + 1

        · 基本——dp[i - 1][j - 1]:以nums1[i - 2]和nums2[j - 1]为结尾的两个字符串的最长重复子数组长度

        · 新增—— +1:加上新的这对匹配元素

        · 最后的递推公式:dp[i] = std::max(dp[i], dp[j] + 1)

4、遍历顺序:从上到下从左到右遍历,先遍历nums1或nums2都可以

int findLength(vector<int>& nums1, vector<int>& nums2) {// dp[i][j]表示以nums1[i - 1]和nums2[j - 1]为结尾的两个字符串的最长重复子数组长度// 首行与首列元素无意义,为了递推公式将其初始化为0vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int ans = 0;for (int i = 1; i <= nums1.size(); ++i) {for (int j = 1; j <= nums2.size(); ++j) {if (nums1[i - 1] == nums2[j - 1]) {// dp[i][j]的值由dp[i - 1][j - 1]递推得到dp[i][j] = dp[i - 1][j - 1] + 1;ans = std::max(ans, dp[i][j]);}}}return ans;
}
http://www.lryc.cn/news/312246.html

相关文章:

  • 一个测试OOM killer的程序未触发OOM所带来的问题
  • SanctuaryAI推出Phoenix: 专为工作而设计的人形通用机器人
  • 李沐动手学习深度学习——4.2练习
  • CYQ.Data 支持 DaMeng 达梦数据库
  • 计网面试题整理上
  • code: 500 ] This subject is anonymous - it does not have any identifying
  • FC-AE-1553 协议
  • 代码随想录算法训练营day38|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
  • 夫妻一方名下股权到底归谁?
  • git根据文件改动将文件自动添加到缓冲区
  • SystemVerilog Constants、Processes
  • 交易平台开发:构建安全/高效/用户友好的在线交易生态圈
  • Linux系统之部署复古游戏平台
  • 开源计算机视觉库opencv-python详解
  • Vue开发实例(十)Tabs标签页打开、关闭与路由之间的关系
  • 基于51单片机的智能火灾报警系统
  • 【数据结构】堆的TopK问题
  • Vue后台管理系统笔记-01
  • 飞天使-学以致用-devops知识点3-安装jenkins
  • 08、MongoDB -- MongoDB 的 集合关联($lookup 和 DBRef 实现集合关联)
  • 前方高能,又一波Smartbi签约喜报来袭
  • 蓝桥杯倒计时 41天 - 二分答案-最大通过数-妮妮的月饼工厂
  • 【JavaSE】泛型
  • APS(高级计划与调度系统)难度超高,ERP在它面前就是弟弟。
  • ArmV8架构
  • [论文笔记] Open-sora 2、视频数据集介绍 MSR-VTT
  • 【Windows 常用工具系列 14 -- windows 网络驱动映射】
  • Java中使用Jsoup实现网页内容爬取与Html内容解析并使用EasyExcel实现导出为Excel文件
  • 闫震海:腾讯音乐空间音频技术的发展和应用 | 演讲嘉宾公布
  • Java基础 - 6 - 面向对象(二)