当前位置: 首页 > news >正文

yolov5v7v8目标检测增加计数功能--免费源码

在yolo系列中,很多网友都反馈过想要在目标检测的图片上,显示计数功能。其实官方已经实现了这个功能,只不过没有把相关的参数写到图片上。所以微智启软件工作室出一篇教程,教大家如何把计数的参数打印到图片上。

一、yolov5目标检测增加计数功能实现

1、在detect.py代码中的132行左右,找到这样的代码

{n}是指类别统计的数量

{names[int(c)]}则是标签名

所以只需要调整这两个参数,就可以得到想要的格式,对于我们常用的习惯,我把代码改成了如下的格式:

运行输出代码,发现前面多出一串,并不是我们想要的效果

所以需要我们自己定义一个变量,只接收后面的统计参数即可。我这里放在了55行,定义一个空的字符串

count=''

然后在s +=的后面接收【f"{names[int(c)]}{'s' * (n > 1)}:{n} |"】的值

count+= f"{names[int(c)]}{'s' * (n > 1)}:{n} |"

然后,只需要在合适的位置,通过cv2,把参数写到图片即可。我这里添加到了151行左右,也就是im0 = annotator.result()的后面。

cv2.putText(im0, f"{count}",(30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)

关于cv2的参数含义如下:

  • im0: 这是输入图像,即要在其上添加文本的图像。
  • f"{s}": 这是要添加到图像上的文本。在这里,s 是一个变量,它被转换为字符串并作为文本添加到图像上。
  • (30, 30): 这是文本在图像上的位置坐标。在这个例子中,文本将放置在图像的 (30, 30) 位置。
  • cv2.FONT_HERSHEY_SIMPLEX: 这是字体类型。在这个例子中,使用了 Hershey Simplex 字体。
  • 1: 这是字体缩放因子。这个值决定了文本的大小。
  • (0, 0, 255): 这是文本的颜色。在这个例子中,文本颜色为红色,表示为 BGR(蓝色、绿色、红色)格式的元组。
  • 2: 这是文本线条的粗细。这个值决定了文本边缘的粗细程度。
  • cv2.LINE_AA: 这是线条类型。在这个例子中,使用了抗锯齿线条。

在cv2添加完后,再清空字符串,方便下次的统计

count=''

二、yolov7目标检测增加计数功能


yolov7和yolov5其实差不多的,可以先运行看一下效果,这个是统计的输出如下,发现有现成的效果:

在这里插入图片描述
打开detect.py。找到117行左右



所以我们只需把{n}–这里的{n}也就是类别的数量,移动到后面就可以了,同时还可以把逗号换成自己想要的符号,我这里是“ | ”移动后如下(可以根据自己的需求更改):

s += f"{names[int(c)]}{'s' * (n > 1)}:{n}|" 

接下来,在合适的位置,通过cv2来把文字显示图片上
在这里插入图片描述

cv2.putText(im0, f"{s}",(30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)
  • im0: 这是输入图像,即要在其上添加文本的图像。
  • f"{s}": 这是要添加到图像上的文本。在这里,s 是一个变量,它被转换为字符串并作为文本添加到图像上。
  • (30, 30): 这是文本在图像上的位置坐标。在这个例子中,文本将放置在图像的 (30, 30) 位置。
  • cv2.FONT_HERSHEY_SIMPLEX: 这是字体类型。在这个例子中,使用了 Hershey Simplex 字体。
  • 1: 这是字体缩放因子。这个值决定了文本的大小。
  • (0, 0, 255): 这是文本的颜色。在这个例子中,文本颜色为红色,表示为 BGR(蓝色、绿色、红色)格式的元组。
  • 2: 这是文本线条的粗细。这个值决定了文本边缘的粗细程度。
  • cv2.LINE_AA: 这是线条类型。在这个例子中,使用了抗锯齿线条。

v7从115行到133行的完整代码如下,可以直接替换。

       for c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{names[int(c)]}{'s' * (n > 1)}  | {n} "  # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)# Print time (inference + NMS)print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
cv2.putText(im0, f"{s}", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)

 三、yolov8目标检测计数功能实现

yolov8相对于前面两个的计数,稍微来说比较麻烦点,可能也有类似的参数,但是我没有找到,所以debug后发现【self.results[i].boxes.cls】这个属性里面,有类别的统计

打开【ultralytics/engine/predictor.py】只需要遍历统计这个类别序号的个数即可。

遍历完数据后,定义一个空的字典【names_dic = {}】

 # 将结果转换为Python列表result_list = self.results[i].boxes.cls.tolist()# 初始化一个空字典用于存储数字和它们的出现次数count_dict = {}# 遍历列表,统计数字出现的次数for number in result_list:if number in count_dict:count_dict[number] += 1else:count_dict[number] = 1for k, v in count_dict.items():names_dic[self.model.names[k]] = vresult_str = '| '.join([f'{key}:{value}' for key, value in names_dic.items()])

然后,在合格的位置,cv2,我添加在了

if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:

这个方法的后面,因为只有执行了它,self.plotted_img才会被赋值

cv2.putText(self.plotted_img, result_str, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)

 

运行效果如下图:


至此,代码已经全部给出了,只要注意代码的缩进,就可以大功告成了。不过,有的朋友还是不懂得修改,那么我就把测试的python完整代码放到csdn上吧,设置的0积分下载。

代码下载地址:

https://download.csdn.net/download/weixin_41717861/88887348

http://www.lryc.cn/news/312083.html

相关文章:

  • JPA常见异常 JPA可能抛出的异常
  • Dockerfile的艺术:构建高效容器镜像的指令详解与实战指南
  • 软件开发项目管理中各角色职责介绍
  • 将时间转换为 `刚刚`、`几秒前`、`几分钟前`、`几小时前`、`几天前`、几月前或按照传入格式显示
  • Oracle存储过程干货(二):PLSQL控制语句
  • 深入Gradle:初识构建自动化的魅力
  • cpp版ros2、opencv转换
  • 使用API接口竞品价格监控
  • Redis的BitMap的使用
  • 视频号带货究竟怎么做?老阳分享的项目怎么样?
  • AI智能分析网关V4智慧环保/智慧垃圾站视频智能分析与监控方案
  • vxe-table编辑单元格动态插槽slot的使用
  • 2024新鲜出炉阿里巴巴面试真题,如果不想35岁被淘汰这篇文章必看
  • 设计模式(含7大原则)面试题
  • claude3科普
  • 2024中国·北京预制菜产业博览会
  • 【Vue】vue3 在图片上渲染 OCR 识别后的文本框、可复制文本组件
  • Linux系统运维脚本:批量创建linux用户和密码(读取文件中的账号和密码来批量创建用户)
  • 重力坝廊道量水堰计与堰板安装技术指南
  • ButterKnife实现之Android注解处理器使用教程
  • 【哈希】Leetcode 128. 最长连续序列 【中等】
  • 回溯是怎么回事(算法村第十八关青铜挑战)
  • 向爬虫而生---Redis 探究篇5<Redis集群刨根问底(1)>
  • 系统集成Prometheus+Grafana
  • 实例驱动计算机网络
  • Unity 报错:SSL CA certificate error
  • 算法刷题Day1 | 704.二分查找、27.移除元素
  • 大数据技术学习笔记(五)—— MapReduce(2)
  • 北斗导航 | 同步双星故障的BDS/GPS接收机自主完好性监测算法
  • 2024金三银四必看前端面试题!简答版精品!